
Outline
Objectives

1. Generic Programming

2. Data Abstraction

3. Problem Solving Applied: Color Image Processing

4. Recursion

5. Class Templates

6. Inheritance

7. Virtual Methods

8. Problem Solving Applied: Iterated Prisoner’s Dilemma

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Objectives

Develop problem solutions in C++ containing:

• Function Templates

• Overloaded Operators

• Image Processing Examples

• Recursive Member Functions

• Class Templates

• Class Hierarchies

• An Implementation of the Iterated Prisoner’s Dilemma
Game.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Generic Programming

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Generic Programming

• Generic programming supports the implementation of a type
independent algorithm.

• Type independent algorithms can be defined in C++ using the
keyword template, and at least one parameter.

• The compiler generates a unique instance of the template for
each specified type.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Function Templates

• A function template is a parameterized function definition.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Syntax:
template<typename identifier1[, typename identifier2[,…]]>
return_type function_name([parameter_list]) { … }

Example
template<typename Dtype>
void swapTwo(Dtype& a, Dtype& b) {
 Dtype temp = a;
 a = b;
 b = temp;
}

Prototype
template<typename Dtype>
void swapTwo(Dtype&, Dtype&);

Instantiating Templates

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

template<typename Dtype& a, Dtype& b>
 void swapTwo(Dtype& a, Dtype& b);
//prototype
…
void main() {
 double x(1.0), y(5.7);
 char ch1('n'), ch2('o');
 swapTwo(x,y);
 swapTwo(ch1, ch2);
 cout << x << ',' << y << endl
 << ch1 << ch2 << endl;
 ...
}

Output:

5.7, 1.0
on

Data Abstraction

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Why Data Abstraction?

• It is common to have to program with
concepts that are not available as built-in or
predefined data types.

• It is often necessary to have to work with
multiple programmers to develop problem
solutions.

• Defining a new type to represent the concept
ensures that all programmers work with same
definition of the concept.

• Build increasingly complex types from

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Data Abstraction

• C++ supports object-oriented programming
through the use of programmer-defined data types.

• Data Abstraction

• User-defined types can be as easy to use as pre-defined
types.

• Operator Overloading

• A well-designed type provides a good public interface
while hiding the details of its implementation.

• Encapsulation

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Overloading Operators

• Overloading operators allows the programmer to redefine the
behavior of existing operators to work with programmer-
designed types.

• Restrictions:

• It is not possible to define new operators.

• Four operators cannot be overloaded:

• :: . .* ?:

• Must adhere to C++ syntax for the operator.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

friends

• Non-members of a class cannot access protected or private
members of the class.

• Functions and other classes can be declared as a friend of
the class.

• Friends are not members of the class and thus are not affected by
visibility specifiers.

• Implementations of friend functions outside of the class cannot
have the friend modifier.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Bitwise Operators

• Bitwise operators perform an
operation on each of the bits in the operand.

• C++ supports 3 binary and 1 unary bitwise operators:

• Bitwise or |

• Bitwise and &

• Bitwise exclusive or `

• Bitwise not ~

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Truth Table of Bitwise
Operators

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

A B ~A A|B A`B A&B

0001 0001 1110 0001 0000 0001

0010 0010 1101 0010 0000 0010

0011 0100 1100 0111 0111 0000

0100 0111 10111 0111 0011 0100

Problem Solving Applied:
Color Image Processing

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Color Image Processing

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Color Image Processing

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Color Image Processing

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Recursion

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Recursion

• Recursion is a powerful tool for solving
certain classes of problems where:

• the problem solution can be expressed in terms of the
solution to a similar, yet smaller problem.

• Redefinition of the problem continues in an iterative
nature until:

• a unique solution to a small version of the problem is
found.

• This unique solution is then used, in a reverse
iterative nature until:

• the solution to the original problem is returned.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Recursion

• Programming languages that support recursion allow
functions to call themselves.

• Each time a function calls itself, the function is
making a recursive function call.

• Each time a function calls itself recursively,
information is pushed onto the runtime stack.

• Each time a recursive function calls returns,
information is popped off the stack. The return
value, along with the information on the stack, is
used to solve the next iteration of the problem

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Recursive Functions

•A recursive function requires two blocks:

• a block that defines a terminating condition,
or return point, where a unique solution to a
smaller version of the problem is returned.

• a recursive block that reduces the problem
solution to a similar but smaller version of
the problem. C

o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example: Recursive Function

• f(0) = f(1) = 1 Unique solution(s).

• f(n) = n*f(n-1) recursive definition.

• Thus f(n) can be determined for all integer values of n >= 0;

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

}1:)1(*,0:1{!)( nnfnnnnf

Recursive Factorial Function

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

long factorial(int n) {
 //termination condition
 if (n < 2)
 return 1; //unique solution
 return n*factorial(n-1); // recurse
}

Binary Tree Abstraction

• A binary tree maintains two links
between nodes.

• The links are referred to as the left child and the right child.
• The first node is called the root.
• Each child(left and right) may serve as the root to a subtree.
• A node without children is referred to as a leaf node.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example Diagram

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

+

2

8

4

*

pointer to root

leaf node leaf node

A BinaryTree Class
Implementation

• A BinaryTree class with one attribute:

• A pointer (node*) to the root of the binary tree.

• Methods:

• insert()

• delete()

• print()

• inOrder(), preOrder(), postOrder() C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

BinaryTree Class

• Implementation of insert:

• Insert into empty BinaryTree establishes the root.

• Each subsequent node is inserted in following order:

• values less than root are placed in the root’s left subtree

• values greater than root are placed in the root’s right subtree

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

preOrder Traversal

• visit node

• visit left child

• visit right child

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

+

2

8

4

*

pointer to root

leaf node leaf node

Traversal Order:

*+248

postOrder Traversal

• visit left child

• visit right child

• visit node

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

+

2

8

4

*

pointer to root

leaf node leaf node

Traversal Order:

24+8*

inOrder Traversal

• visit left child

• visit node

• visit right child

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

+

2

8

4

*

pointer to root

leaf node leaf node

Traversal Order:

2+4*8

BinaryTree Class

• Recursive Methods:

• print(), insert(), clear()

• Recursive methods are overloaded.

• public version is non-recursive.

• public version is called once.

• public version calls private recursive version.

• Recursive version calls itself.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

UML Class Diagrams

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Binary Search Tree

• A Binary Search Tree is an example
of an ordered binary tree where:

• Each node has a value.

• The left subtree of a node contains only nodes with values less
that the node’s value.

• The right subtree of a node contains only nodes with values
greater than the node’s value.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Binary Search Tree Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Class Templates

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Class Templates

• A binary tree is an ordered collection of nodes.

• Each node has a data value, a right child and a left
child.

• The data type of the right and left child is node*.

• The data type of the node value is parameterized to
form a class template.

• The binary tree template also parameterizes the
node type.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Suggestions for Writing
Templates

• Get a non-template version working first.

• Establish a good set of test cases.

• Measure performance and tune.

• Review implementation:

• Which types should be parameterized?

• Convert non-parameterized version into template.

• Test template against established test cases.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Inheritance

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Inheritance

• Inheritance is a means by which
one class acquires the properties--both
attributes and methods--of another class.

•When this occurs, the class being inherited
from is called the base class.

• The class that inherits is called the derived
class.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

C++ and Public Inheritance

• The private members of a base class are only
accessible to the base class methods.

• The public members of the base class, are
accessible to the derived class and to clients of the
derived class.

• The protected members of the base class, are
accessible to members of the derived class, but
are not accessible to clients of the base class or
clients of the derived class.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

UML Inheritance Diagram

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Base Class (Rectangle)

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

class Rectangle {
private:
 double width, height;
 Point origin;
public:
 Rectangle();
 Rectangle(double w, double h, double x, double y);
//Accessors

//Mutators
…
};

Derived Class (Square)

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

class Square: public Rectangle {
public:
 Square();
 Square(const Point&, double);
//Accessors
 double getSide() const;
//Mutators
 void setSide(double);
…
};

Constructors and Inheritance

• When an object is created, its constructor
is called to build and initialize the attributes.

• With inheritance, the invocation of constructors
starts with the most base class at the root of the
class hierarchy and moves down the path to the
derived classes constructor.

• If a class is to use the parameterized constructor of
a base class, it must explicitly invoke it.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Constructors

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Rectangle::Rectangle(double w, double h,
 double x, double y) : origin(x,y) {
…
}

Square::Square(const Point& p,
 double side) : Rectangle(side, side, p.x, p.y) {
…
}

Virtual Methods

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Methods

• All methods are, by default, non-virtual methods. Binding of method
call is determined by static type of calling object.

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Rectangle r1;
Square s1;
r1 = s1;
r1.print(cout); //calls print defined in Rectangle

Virtual Methods

• If a method is defined to be virtual,
and pointers or references to objects are used, then dynamic

binding is supported.
Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Rectangle *r1;
Point p2;
Square s1(p2,5);
r1 = &s1;
R1->print(cout); //calls print defined in Square

Problem Solving Applied:
Iterated Prisoner’s Dilemma

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Iterated Prisoner’s Dilemma

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Iterated Prisoner’s Dilemma

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Iterated Prisoner’s Dilemma

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

