Outline

Objectives

Generic Programming
Data Abstraction
Problem Solving Applied: Color Image Processing

Recursion

Class Templates
Inheritance
Virtual Methods
Problem Solving Applied: Iterated Prisoner’s Dilemma

© N o Uk W eE

Objectives

Develop problem solutions in C++ containing:
* Function Templates

* Overloaded Operators

* Image Processing Examples

* Recursive Member Functions

* Class Templates

* Class Hierarchies

* An Implementation of the lterated Prisoner’s Dilemmza
Game.

Generic Programming

Generic Programming

* Generic programming supports the implementation of a typ
independent algorithm.

* Type independent algorithms can be defined in C++ using the
keyword template, and atleast one parameter.

* The compiler generates a unique instance of the template for
each specified type.

Function Templates

* A function template is a parameterized function definition.

Syntax:
template<typename identifierl|, typename identifier2],...]]>

return_type function_name([parameter_list]) { ... }

Example
template<typename Dtype>

void swapTwo(Dtype& a, Dtype& b) {
Dtype temp = a;
a =b;
b = temp;

}

Prototype
template<typename Dtype>
void swapTwo(Dtype&, Dtype&);

Instantiating Templates

Example:

template<typename Dtype& a, Dtype& b>
void swapTwo(Dtype& a, Dtype& b);

//prototype

void main() {
doubTe x(1.0), y(5.7);
char chl('n'), ch2('o');
swapTwo(X,Vy);
swapTwo(chl, ch2);

cout << x << ',"' <<y << endl Output:

<< chl << ch2 << endl; 5.7, 1.0
on

Data Abstraction

Why Data Abstraction?

* It is common to have to program with
concepts that are not available as built-in or
predefined data types.

* It is often necessary to have to work with
multiple programmers to develop problem
solutions.

* Defining a new type to represent the concept
ensures that all programmers work with same
definition of the concept.

* Build increasingly complex types from

Data Abstraction

* C++ supports object-oriented programming
through the use of programmer-defined data types.

Data Abstraction
* User-defined types can be as easy to use as pre-define

types.
Operator Overloading

* A well-designed type provides a good public interface
while hiding the details of its implementation.

Encapsulation

Overloading Operators

* Overloading operators allows the programmer to redefine t
behavior of existing operators to work with programmer-
designed types.

* Restrictions:

It is not possible to define new operators.
Four operators cannot be overloaded:
K ?:

Must adhere to C++ syntax for the operator.

friends

* Non-members of a class cannot access protected or private
members of the class.

* Functions and other classes can be declared as a friend of
the class.

Friends are not members of the class and thus are not affected by
visibility specifiers.

Implementations of friend functions outside of the class cannot
have the friend modifier.

Bitwise Operators

* Bitwise operators perform an
operation on each of the bits in the operand.
* C++ supports 3 binary and 1 unary bitwise operators:
* Bitwise or |
* Bitwise and &
* Bitwise exclusive or "’
* Bitwise not ™

Truth Table of Bitwise
Operators

Problem Solving Applied:
Color Image Processing

Problem Solving Applied:
Color Image Processing

1. PROBLEM STATEMENT
Modify a color digital image by performing a smoothing process on the image.

2. INPUT/OUTPUT DESCRIPTION

The input to this program is the data in the image file lo.ppm. The output is the modified
image. We must first read the header information to determine the size of the image. We
can then use the information i the header to allocate memory and input the pixel values.

magic pumber —= — magic number
comments — — Ccomments
width — —s wdih
O ™| beight — —» height
maximnm color —= — maximum color
— — modified pixel

Co.ppm pixel values

values

3. HAND EXAMPLE

To perform the smoothing process on the image, we will take an average of the current pixel
and the four adjacent pixels; the pixel to the left, the pixel above, the pixel to the right, and

the pixel below. We will replace the oniginal pixel value with the smoothed pixel value as
we perform the calculations. For our hand example, we will determine the smoothed value

for one pixel from the image of Io.
Original image:

143 159 211 142 160 210 142 160 210
136 158 208 I35 158 208 136 136 207
140 153 206 142 151 206 142 151 206

The current pixel has a red value of 135, a green value of 158, and a blue value of 208. The
smoothed value for this pixel is calculated as follows:

red value -» (135 + 136 + 142 +136 #1&£2)/5 = 138
green value -» (158 +158 + 160 + 156 +151)/5 = 156
blue value -» (208 + 208 + 210 + 207 + 206)/5 = 207
Modified image:

143 159 211 142 160 210 142 160 210
136 158 208 138 1536 207 136 136 207
140 153 206 142 151 206 142 151 206

This process 1s repeated for every interior pixel in the image. Pixels on the boundanes
are missing one of the four adjacent pixels just described (corner pixels are missing two)
and will not be modified in this application.

Problem Solving Applied: "
Color Image Processing A

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it breaks the solution into a series of
sequential steps.

Decompaosition Cutline

(1) Read the header information

(2) Wnte header information fo the new file.
(3) Read the pixel values.

(4) Perform smoothing on each interior pixel.
(5) Write smoothed pixel values to the new file.

Steps 1 and 2 involve reading the header informafion from the data file and preserv-
ing this information by writing it to a new file. We will write a function to perform this
task. Step 3 requires reading the pixel values mto a two dimensional array. The array size
depends on the information 1n the header, so we will use the vecfor class to define a two-
dimensional array type pixel. Step 4 involves performing a smoothing modification on the
image. We will write a second function to perform this task To easily store and modify
the pixel elements in the image. we will use the pixel c1a== developed in Section 10.2.

-
=
I
-
-
O
Q
as

Recursion

* Recursion is a powerful tool for solving
certain classes of problems where:

the problem solution can be expressed in terms of the
solution to a similar, yet smaller problem.

* Redefinition of the problem continues in an iterative
nature until:

a unique solution to a small version of the problem is
found.

* This unique solution is then used, in a reverse
iterative nature until:

the solution to the original problem is returned.

Recursion

* Programming languages that support recursion|e
functions to call themselves.

* Each time a function calls itself, the function is
making a recursive function call.

* Each time a function calls itself recursively,
information is pushed onto the runtime stack.

* Each time a recursive function calls returns,
information is popped off the stack. The return
value, along with the information on the stack, is
used to solve the next iteration of the problem

Recursive Functions

* A recursive function requires two blog

a block that defines a terminating condition
or return point, where a unique solution to ¢
smaller version of the problem is returned.

a recursive block that reduces the problem
solution to a similar but smaller version of
the problem.

Example: Recursive Function

f(nN)=nl={L:n=0,n*f(n-1):n>=1}

* f(0) =f(1) = 1 Unique solution(s).
* f(n) = n*f(n-1) recursive definition.
* Thus f(n) can be determined for all integer values of n >= 0;

Recursive Factorial Function

Example:

long factorial(int n) {
//termination condition
if (n < 2)
return 1; //unique solution
return n*factorial(n-1); // recurse

}

Binary Tree Abstraction

A binary tree maintains two links

between nodes.

The links are referred to as the left child and the right child.
The first node is called the root.

Each child(left and right) may serve as the root to a subtree.
A node without children is referred to as a leaf node.

Example Diagram

l pointer to root

leaf node leaf node

A BinaryTree Class
Implementation

* A BinaryTree class with one attribute:
* A pointer (node*) to the root of the binary tree.

* Methods:
insert()
delete()

print()
inOrder(), preOrder(), postOrder()

BinaryTree Class

* Implementation of insert:
* Insert into empty BinaryTree establishes the root.

* Each subsequent node is inserted in following order:
values less than root are placed in the root’s left subtree

values greater than root are placed in the root’s right subtree

preOrder Traversal

l pointer to root

° visit node
* visit left child

* visit right child

leaf node leaf node

Traversal Order:
*+248

postOrder Traversal

l pointer to root

* visit left child
* visit right child

° visit node

leaf node leaf node

Traversal Order:
24+8%*

inOrder Traversal

* visit left child
* visit node

* visit right child

leaf node leaf node

Traversal Order:
2+4*8

BinaryTree Class

Recursive Methods:
print(), insert(), clear()

Recursive methods are overloaded.

public version is non-recursive.

public version is called once.

public version calls private recursive version.

Recursive version calls itself.

UML Class Diagrams

BinaryTree

— node* root
— void insert (node®, int)
— void print (ostreamé, node*) const

— void clear (node*) Node

+ void insert (int) — int data

+ vioid print (ostreamd&) const — Node* left

+ vioid clear() — Node® right

+ Binary tree() + Node()
+ Node (int)
+ Node* getLeft()

1 + Node*® getRight()
Node + int getDataf)

+ void setLeft (Node*)
+ void setRight (Node*)
+ void setData (int)

Binary Search Tree

* A Binary Search Tree is an example
of an ordered binary tree where:

Each node has a value.

The left subtree of a node contains only nodes with values less
that the node’s value.

The right subtree of a node contains only nodes with values
greater than the node’s value.

Binary Search Tree Example

root

Class Templates

Class Templates

* A binary tree is an ordered collection of nodes.

* Each node has a data value, a right child and a left
child.

* The data type of the right and left child is node *.

* The of the node value is parameterized to
formaclass template.

* The binary tree template also parameterizes the
node type.

Suggestions for Writing
Templates

Get a non-template version working first.
Establish a good set of test cases.
Measure performance and tune.

Review implementation:
Which types should be parameterized?
Convert non-parameterized version into template.
Test template against established test cases.

<
O
-
S
=
=
<
=
=

Inheritance

* Inheritance is a means by which
one class acquires the properties--both
attributes and methods--of another class.

* When this occurs, the class being inherite
from is called the

*The class that inherits is called the

C++ and Public Inheritance

. are only
accessible to the base cl1ass methods.

o ,are
accessible to the derived c1ass and to clients of the
derived class.

. ,are
accessible to members of the derived class, but
are not accessible to clients of the base class or
clients of the derived class.

UML Inheritance Diagram

Rectangle

=

Point

Square

+ Square()

+ Square (const Point&, double)
+ double getSide() const

+ void setSide(double)

Base Class (Rectangle)

Example:

class Rectangle {
private:
double width, height;
Point origin;
public:
Rectangle();
Rectangle(double w, double h, double x, double y);
//Accessors

//Mutators

i

Derived Class (Square)

Example:

class Square: public Rectangle {
public:

Square();

Square(const Point&, double);
//Accessors

double getSide() const;
//Mutators

void setSide(double);

i

Constructors and Inheritance g

* When an object is created, its constructor
is called to build and initialize the attributes.

* With inheritance, the invocation of constructors
starts with the most base class at the root of the
class hierarchy and moves down the path to the
derived classes constructor.

* If a class is to use the parameterized constructor of
a base class, it must explicitly invoke it.

Constructors

Example:

Rectangle: :Rectangle(double w, double h,
double x, double y) : origin(x,y) {

}
Square: :Square(const Point& p,
double side) : Rectangle(side, side, p.x, p.y)

Virtual Methods

Methods

* All methods are, by default, non-virtual methods. Binding of
call is determined by static type of calling object.

Example:

Rectangle ril;
Square sl;
rl = sl;

rl.print(cout); //calls print defined in Rectangle

Virtual Methods

* |f a method is defined to be virtual,
and pointers or references to objects are used, then dynami

binding is supported.

Example:

Rectangle *rl;
Point p2;

Square s1(p2,5);
rl = &sl;
R1->print(cout); //calls print defined in Square

Problem Solving Applied:
[terated Prisoner’s Dilemma

Problem Solving Applied:
[terated Prisoner’s Dilemma

1. PROBLEM STATEMENT

Write a program to implement the iterated prisoner’s dilemma for two players. Using the
plaver clacs as a base class, denive a new class that implements the “Tit for Tat”
strategy. Play this strategy against the default strategy of the player c1as=.

2. INPUT/OUTPUT DESCRIPTION

The mput to this program 1s the number of iterations in a game. The output is the total
score of each player and the winner of the game.

Number of Game Score
. . —
iterations

Problem Solving Applied:
[terated Prisoner’s Dilemma

3. HAND EXAMPLE

If both players cooperate at each play and the game runs for 10 iterations, the score for
each player will be 30. The program will output the following results:

Playerl and Player 2 tied at 30 points each.

Problem Solving Applied:
[terated Prisoner’s Dilemma

4. ALGORITHM DEVELOPMENT
We first develop the decomposition outline to break the problem into a sequence of steps:

Decomposition Outline

(1) Define a player object for each player, and setup the game.

(2) Input the number of iterations.

(3) Player 1 makes first move.

(4) Player 2 makes first move.

(5) Determine payoff.

(6) Additional moves and payoffs for the specified number of iteration.
(7) Report the score.

Step 1 requires that each player develop a strategy for playing the game and define
a class, denved from the base player c1lass, to implement their strategy. Objects of
each player c1asge are then defined, and the game reports on the players. We will write a
function to set up the game. Steps 2—6 form the heart of the game. We will write a function
to perform these steps for the desired number of iterations. We will also write a function
to determune the payoff of each move. This function will be used mn steps 5 and 6. Step 7
reports the final scores. This will also be done in a function.

