
SELECTION:”Flow” chart example

Decision point IF Age = ?

Chapter 3 Outline:
Read study sections 1 to7
Objectives

1. Algorithm Development

2. Structured Programming (avoiding spaghetti code).

3. Conditional Expressions

4. Selection Statements: if Statement

5. Numerical Technique: Linear Interpolation

6. Problem Solving Applied: Freezing Temperature of Seawater

7. Selection Statements: switch Statement

View and study the following videos in this order as we cover the topics

• 8 Variables and Data Types Part 2

• 10 IF statements Part 1

• 11 IF statements Part 2

• 16 SWITCH statement

https://www.youtube.com/watch?v=yuLL65IBREI&index=12&list=PLlv1LiN5ZAdnQPK4l3vqDkhoCz9QrjCT8
https://www.youtube.com/watch?v=LQMVR1HfCgA&list=PLlv1LiN5ZAdnQPK4l3vqDkhoCz9QrjCT8&index=15
https://www.youtube.com/watch?v=K9xpTAIhQfI&index=16&list=PLlv1LiN5ZAdnQPK4l3vqDkhoCz9QrjCT8
https://www.youtube.com/watch?v=ZAP0YYaFim8&index=23&list=PLlv1LiN5ZAdnQPK4l3vqDkhoCz9QrjCT8

C++ CONTROL STRUCTURES

The real power of a computer program
resides in the programmer tools that can cause
different statements to be executed by various
conditions. This is called SELECTION and this
chapter covers that.

The other major ability is for a program to
repeat itself based on conditions which is called
REPETITION which we cover in detail the next
chapter. But some of it covered now.

Objectives clarified.

Develop problem-solving solutions in
C++ containing:

• Conditional expressions that evaluate to true of false.

• Selection structures that allow us to provide alternative paths in a
program.

• Algorithm development and descriptions of algorithms using flowcharts
and pseudocode.

Algorithm Development

• An algorithm is a sequence of steps for solving a problem.

• Which can be expressed as a flow chart (emphasized in this course!)

• Engineering problem solutions to real world problems require
complex algorithms.

• Development of a good algorithm increases the quality and
maintainability of a solution, and reduces the overall time required
to implement a correct solution.

Structured Programming: Top-Down Design
we avoid jumping around anywhere in the
program called spaghetti code which becomes extremely
difficult to proof read and correct errors

• Top-down design begins with a "big picture" description of a problem
solution in sequential steps. Decomposition!

• Example

• Decomposition Outline of UDF airplane example we did previously
(pseudo code solution)

• Read time (or say input or get)

• Compute Velocity and acceleration (computation)

• Print Velocity and acceleration (or say output or write)

• The sequential steps are refined until the steps are detailed enough to
translate to language statements.

• The refined steps, or algorithm, can be described using pseudo code
or flowcharts.

FLOWCHARTS! Permit you to see the control almost immediately
needed for programing and will be emphasized in this course.

start

Read t

v=f(t)
a= f(v)

print t,v,a

stop

Decomposition of a problem to its key elements
needed for a solution
another example-a little fancy –got repetition(next
chapter) in it!

• Area of circles –not just one but any circle (lots of them)

• (pseudo code)

• Read a radius, r

• Calculate the area of a circle, A

• Output radius and area r,A

• Go back and get another radius unless its <0 end program

• (This is basic its just to understand the next figure)

Pseudocode Notation and Flowchart Symbols

Overview All above is here

Better flowchart

Start

Read r

A=pr2

Out r,A

r<0 ?

stop

T F

stop

Bad design! Why?

Flowcharts algorithm
symbols some basics

Assignments (calculations) example y = 2*pow(r,3);

Also called Statements!

Input or output example cin cout

Decision or selection (Logical) program has 2

possible paths to Travel example we will study

IF statements

Start or end main program

Structured Programming: The design idea

• A structured program is written using
simple control structures, including:

• Sequence – steps are performed one after another.

• Sequencel flow (not spaghetti code or jumping around anywhere in the original
programming with control code like GOTO anywhere! Which languages support!

• Selection – one set of statements is executed if a given condition is true, a different set
of statements, or no statements at all, is executed if the condition is false.

• Repetition –A set of statements is executed repeatedly as long as a given condition is
true. Also called a loop (we cover in detail the next chapter)

Quick look at repetition (a “while” loop!

•

//;Repetition (loop)

• x=7;

• while (x<9)

• {

• cout <<x<<endl;

• x=x+1;

• }

• what is the output here?

• enter loop->

•

• <-exit loop

Block of code is defined

With { }

Here while() command

Controls the block

?

true

false

Block

1. Single statement single outcome

Lone IF STATEMENT

x=5; r=8;

If(x < r)

cout << “How are You”;

2.Sequence

c=9; x =9; y= 4;

Lone IF –ELSE STATEMENT

Selection

if(c>y)

v=0.5*x;

else

v= sqrt(x);

//What is the value of v?

If c= 3 what is the value of v?

Initial introduction to the if and If-else selection

Control of what is executed next depends upon a

“conditional expression” like (x>=u) or (y=x+z) being true or false.

Lots more on this to follow

? = conditional expression

?
T

?
truefalse

• Start Main

Velocity = 0.00001*time3-
0.00488*time2+0.75795*time

+181.3566

acceleration=3-0.000062*velocity2

Read time

Print Velocity,
acceleration

• Stop
Main

Is |denom|
<0.00001

YES NO

Frac=num/denom

Print frac

Print “denom
almost zero”

Flowchart Fun!

Note basically the actual condition

And statement to be evaluated

And input and output are in the symbols

BLOCK OF CODE

What is wrong with this flow chart?

We now examine the types of Conditional
Expressions that can be constructed.
They can be very complex! Maybe even
drive you crazy! Take them apart one step at a
time when they are involved.

•A conditional expression is a
Boolean expression that evaluates to true or
false. (actually have the value of 1 for true and
0 for false)

•Selection structures and repetition structures
rely on conditional expressions.

•Relational operators and logical operators

• are used to form conditional expressions.

Relational Operators with (conditional expression)

== equality (a==b)
NOTE NEVER USE only “=“ alone in conditions
Since it is an assignment statement and will

cause logical errors, very difficult to detect!
!= non equality (a!=b)
< less than (a<b)
> greater than (a>b)
<= less than equal to (a<=b)
>= greater than equal to(a>=b)

e.g. (sin(x) <0.5) or (z+y == u) or (sqrt(x)>25)

Important Logical Operators
! Not && and || or

The Truth Table (false =0 and true =1)
A

A B C A&&B || B&&C EVALUATE NOW IN CLASS!

0 0 0 ?

0 0 1

0 1 0

0 1 1

1 0 0

1 0 1

1 1 0

1 1 1

A B A&&B A||B !A !B

false false false false true true

false true false true true false

true false false true false true

true true true true false false

MATLAB ALSO USES SIMILAR LOGICAL AND RELATIONAL OPERATORS

For efficient programming:

C++ only evaluates as much of an expression as necessary to evaluate it.

E.g. if A is false, A && B is always false, regardless of the value of B.

E.g. if A is true, A || B is always true, regardless of the value of B.

In class, complete the following truth tables
• A B C A&&B || B&&C A&&B&&C

• 0 0 0

• 0 0 1

• 0 1 0

• 0 1 1

• 1 0 0

• 1 0 1

• 1 1 0

• 1 1 1

• A B C A||B||C A&&!B (ignore C

• 0 0 0

• 0 0 1

• 0 1 0

• 0 1 1

• 1 0 0

• 1 0 1

• 1 1 0

• 1 1 1

•

• We generate the table (A && B || B && C) as an example of neat output
using program 3_1 from the text that follows next :

• Note \t in the next program and how it is used to create data columns.
What does it mean?

?*DEMO

/* Program chapter3_1 generates a truth table for the condition: */

/* A && B || B && C */

#include <iostream>

using namespace std;

int main()

{ //Declare and intialize objects

bool A(false), B(false), C(false);

//Print table header condition is (A && B || B && C)

cout << "TABLE 3.2\n A\tB\tC\t\tA && B || B && C" << endl;

cout << "___" << endl;

cout << A << '\t' << B << '\t' << C << "\t\t\t"<<(A && B || B && C) << endl;

//Toggle C

C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" << (A && B || B && C) << endl;

//Toggle B and C

B = !B; C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" <<(A && B || B && C) << endl;

//Toggle C again

C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" << (A && B || B && C) << endl;

//Toggle A, B and C

A = !A; B = !B; C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" << (A && B || B && C) << endl;

//Repeat the pattern for B and C..

//Toggle C again

C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" << (A && B || B && C) << endl;

//Toggle B and C

B = !B; C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t"<<(A && B || B && C) << endl;

//Toggle C again

C = !C;

cout << A << '\t' << B << '\t' << C << "\t\t\t" << (A && B || B && C) << endl;

return 0;

}

Precedence Operator Associativity

1 () Innermost First

2 Unary operators: + - (++ --) ! (type) Right to left

3 * / % Left to right

4 + - Left to right

5 < <= > => Left to right

6 == != Left to right

7 && Left to right

8 || Left to right

9 = (+= -= *= /= %=) Right to left

CLASS EXERCISE Evaluate these conditional expression: note precedence!.

b= 3; c=5;

!(b==c || b==5.5) precedence order? Why? What is the final Boolean answer?

Given a=5.5 k=3 b=1.5

Evaluate the Boolean answer for each of the following conditional expressions

k!=a-b b-k>a b-a<k !(a==3*b) fabs(k)<3|| k<b-a

HAND IN LABORATORY TASK: LAB #8
Truth Table and modification Prog 3_1
+ EC 0.5 pt on Final average for last condition

• Run the program as found online 3_1 to generate truth Tables

• Found online in source code directory

• First run it as is. Attach output as comments as before.

• Then edit it and Run it for the following new conditions and attached
output tables generated. For the original and the next two conditions

• Table for the condition A&&B&&C

• Table for the condition A||B||C

Be sure to put all three Boolean expression in one table with headings

• Ie. Original 3_1 Boolean and A&&B&&C and A||B||C in a table
with 3 columns

Hand in HW #4 36 pts
Read study SECs 3.1-3.3

1. Evaluate the following conditional expressions (T or F). 4 pts

a. 13 < 6 (7 > 9) && (6 != 5) (4 < 3) || (4 >= 0) !('F' < 'M')
2. FLOWCHART THE FOLLOWING (condensed) CODE in detail 8 PTS

int main()

{ int number;

cout << "Enter an integer: ";

cin >> number;

if (number > 0) cout << "You entered a positive integer: " << number << endl;

else

if (number < 0) cout<<"You entered a negative integer: " << number << endl;

else cout << "You entered 0." << endl;

cout << “When is this line printed?.";

return 0; }

3. Setup at table like below and Complete the truth table 16 pts

4. In C++, the = and == operators perform identical operations and may be used

interchangeably. True or False 1 pt

5.Expalin what type of operator for Each. (logical, arithmetic, relational, unary, binary)

A. ! B. == C. % D. != E. (F. ++ G. && 7 pts

A B A&&!B A||!B !A & B !B & !B

false false

false true

true false

true true

•Complete the true table for C++ logical operators.

HAND IN LABORATORY TASK: LAB #9 v.3/2/18
Write a program that inputs the values of three

Boolean variables, a, b, and c, from a “cin” operator

(user gives the values be sure to prompt user for what they

have to give!). Then the program determines the value of the

conditions that follow as true or false.

1. !(a&&b&&c) && ! (a||b||c)

2. !(a||b)&&c
Output should include the values of a,b,c ie 0 or 1 in the patterns that follow

reflecting the Boolean logic being tested.

Where “True” or “False” are in string variables.

Study this example!

for input of a=1 and b =0 and c=1 results in output looking like

!(1&&0&&1) && !(1|| 0||1) is False

!(1||0)&&1 is False

Run for the eight cases of a,b,c in Table 3.2 (both editions of text)

Warning follow this output example format else you will have to redo it!

Hint: your output statements will be large!

Selection in detail
The basic if Statement

Simplified Syntax
if (boolean_expression)

statement;

Statement Block { } execution!

if (boolean_expression) {
statement1;

…
statement_n;

} // style 1

if (boolean_expression)
{

statement1;
…

statement_n;
} // style 2
Prof recommends style 2

Examples of writing Basic IF statements
//single statement executed if x>0
if (x>0)

++k;
or

// block(multi statements) executed if x>0

//Style 1 indented statements, note braces{}
//NOT RECOMMENDED BY PROF!

if (x>0) {
x = sqrt(x);
++k;

}

//Style 2 Easier to read, better organized

if (x>0)
{

x = sqrt(x);
++k;

}
Note we use braces to show block
and indent to show what belongs in a block!

?
True or Yes

False or No

?
True or yes

False or No

if (x>0) ++k;

Another example

If (!error && x>0)

{

sum = sum+x; or sum +=x

count = count+1 or ++count

}

IN CLASS PROBLEM Nesting of if statements

What will happen here???

USE table to follow variables in memory CALLED PLAY COMPUTER

DO THIS NOW IN CLASS? On Paper!

output for input of a =100,35, 10

#include<iostream> //io

Using namespace std;

Int main()

{ VARIABLE TABLE OUTPUT

int a, count(1), sum(100); a count sum

cin>>a;

if(a<40)

{

++a

if (a<20)

{

++count;

sum=sum+a;

}

} // first if end

cout <<(double) sum/count<<“ “<<a;

return 0;

{

Selection The if-else Statement
Syntax
if (boolean_expression)

statement;
[else

statement;]

if (boolean_expression)
{

block …
}

[else
{

block
}

Example

if (x>0)
{ //statement block executed if x>0

}
else
{ //statement block executed if x<=0

}

?
truefalse

NOTE: Using multiple simple if statements when if-else logic is called for will not

Be acceptable!

More Examples If-else
if (d<30)

velocity = 0.425 + 0078*pow(d,2);

else

velocity = 0.625 +0.08*d +0.25*pow(d,3);

if (fabs(denominator) <.0001)

cout << “Forget dividing denominator is almost zero” << endl;

else

{

fun =numerator/denominator;

cout << “fun = “ << fun<< endl;

}

NOT ACCEPTABLE SOLUTION TO THE FIRST EXAMPLE

if (d<30) velocity = 0.425 + 0078*pow(d,2);

If (d>=30) velocity = 0.625 +0.08*d +0.25*pow(d,3);

Would the latter work? Why is this an inefficient use of a program?

More examples

x>y

++c1

true
false

Nesting if ELSE

If (x>y)

{ ++c1

-- x

}

else if (x<w)

{ ++c2

--y

}

else

{

++c0

}

z= cos (x*y)

--x

x<w
truefalse

++c2

-- y

++c0

z=cos(x*y)

WHY SOME SOFTWARE CRASHES

Choices we make for a

hot dog as an example?

Note: Exact conditions and statements

Should be in the symbols

Each statement

Has separate

rectangle

HAND IN (HW #5) read study section 3.4 part I &II (next) 32 points
Do EXAM PRACTICE PROBLEMS 1 to 4 and 7 to10 8PTS
11. show the output for the following program segment
int A, B; A = 6; B = 1; 3 pts

if (A > B)
{ A = A * B + 2;

B ++; }
else

{ A = A / 2;
B = B + 4;}

cout << “A = “ << A << “ B = “ << B;
12. show output for each case X= 3; 2. X= 8; 3. X= 15; 4. X=30; 8pts (2 each)

int X, Y;
if (X <= 5)

{ Y = X * X;
X = X + 5;}

else
{ if (X < 10)

Y = X - 2;
else

if (X < 25)
Y = X + 10;

else
Y = X / 10;

X++;
}

cout << “Y = “ << Y << “; X = “ << X; HW#5 continued next slide

Homework # 5 continued part II

13. Draw a flow chart! show statements in proper Flow chart symbols. 8 pts.

if (x>y)

if (y<z)

{

++k;

j=y+9;

}

else

{

y=log(x);

--k;

}

else

sum =sum+y+x;

cout << y<< x<<sum;

14. Which of the following are characteristics of a good algorithm: 3 pts

A. Improved quality of the solution.

B. Improved maintainability of a solution.

C. Reduced implementation time.

D. All of these are characteristics of a good algorithm.

15Structured programming requires the use of complex control structures.

True or False 2 pts

Write a C++ program to calculate the wind chill index and report on frost bite times. In other
words how long till a person is frost bitten! With a given temperature and wind Velocity
you will determine the time for frostbite by evaluating the wind chill index. Twc !

Use the Following formula.

Twc=35.74 +0.6215Ta-35.75V0.16+0.4275 TaV 0.16

Where Twc is known as the “wind” chill index, based on the Fahrenheit scale ,

Ta is the air Temperature, measured in oF and V is the wind speed, in mph.

Prompt the user for the required input (to solve formula for Twc)
If the index value of Twc is below -19 report a frostbite time of 30 minutes or less.
else If the index value is below -48, report the Frostbite time of 5 minutes or less.
Be sure to add the case when there is no Frostbite, i.e. Person is Safe!
note: use only one IF/else structure to cover the 3 cases
not 3 IF’s in a row(bad programming).
Find on your own by trial and error input data to Run for each of the three
possible outcomes. Output all values, Twc ,Ta& V and appropriate statement!

Run one hand check for the value of Twc for one of your inputs of Ta and V

Be sure to show your hand check and value of the output that confirms formula
is working properly by pencil on the lab exercise..

HAND IN LABORATORY TASK: LAB #10

Avoiding Bugs

• To avoid confusion and possible
errors when using if/else statements, you should use {} to clearly
define statement blocks.

• As I mentioned == works fine for intergers but what to do with other
types. Answer is below.

• Do not use == with real values
• Instead of x==3.14, use
fabs(x-3.14)<0.0001

• Why does this work?

Some notes to avoid problems
Do not confuse relational equality(==) and
assignment operators(=)!

• What will output here?

• #include <iostream>

• using namespace std;

• int main()

• {

• int x(4), y(5);

• if(x = y)

• {

• cout << x << "is equal to " << y << endl;

• }

• return 0;

• }

•

• //MAJOR ERROR OF ALL PROGRAMMERS! CHECK OUTPUT CAREFULLY!

• //Also using equality with integer is ok but not double!!!

• //double x, y

• //if (x==y) do not use this for double variables equality can be illusive!

• //If (abs(x-y)< 0.000001) then maybe then they are essentially equal!

In class: exercise
Draw flow chart and write C++
statement(s) for each of the following
1. When the square root of ‘quad’ is
less than 0.4 print the value of quad

2. If the absolute difference of Voltage1 and
Voltage2 is larger than 20.0 print the values of
each voltage.

3. if the natural logarithm of y is equal to 4.23
set time to zero and decrement the count.
Recall equality in using decimal numbers!

Our first Numerical Technique!
Linear Interpolation followed
Why do we use it?

• Answer!

• Collecting data in a computer usually results in a collection of
samples.

• Often, we are interested in what happens ‘in between’ the sample
points.

• i.e. we need to interpolate between the samples.

• Two ways to find the intermediate value

• 1.Linear interpolation.

• 2. Cubic spline interpolation we will cover this in MATLAB OR LATER
IN THE TERM WITH C++

• The latter are both common techniques for interpolation .

Interpolation Example
Temperature as a function of time of a cylinder
head in the engine of a racing car.
We only have a table of certain point of(T,t)
Time,s Temperature, F

0.0 0.0

1.0 20.0

2.0 60.0

3.0 68.0

4.0 77.0

5.0 110.0

Points are marked on

Graph on the right->

Note the linear and cubic

Spline equations give us values

Between the points we have!

We only know the points not the’

Data values in between the points

Interpolations lets us get values

For in between the points.

Both linear and cubic

Interpolation are done

Between two points

In the data we have.

Given two points how do we estimate the values between them.

The linear interpolation generates a straight line between the points

From which we get value within the two points.

The last graph showed the straight lines between points that are

Assumed. Time,s Temperature, F

0.0 0.0

1.0 20.0

2.0 60.0

3.0 68.0

3.5 F? ->ANSWER IS 72.5 FOR Time = 3.5 sec SEE BELOW.

4.0 77.0

5.0 110.0

We want F for time=3.5 from the data set.

We assume a linear relationship between values which means we can

Set up simple ratios illustrated with braces above to get matching values.

So we have options for ratios but as long as we are consistent we get values

We can do the ratio in various ways for here we pick

(F-68)/(77-68) = (3.5-3)/(4-3) -> (F-68)/9 =(.5/1) or

F = 68 + 9*.5 =68+4.5=72.5

Linear Interpolation ->developing a fancy formula
f(a), a, f(c), and c are known. We wish to estimate f(b) where

a < b < c. See equation below. In our last example

f(b) =F and b=3.5 a=3.0 c=4.0 f(a)=77 f(c) =68 generates the

F =72.5 solution. See graph that puts our last table values in

perspective

Linear interpolation is a straight-line approximation between the

known points. The formula below is used with the previous data

on the right.

77

68

3.0 3.5 4.0

{ f(b)-f(a) } / { f(c)-f(a) } = {b-a} /{c-a }

(f(b)-68)/(77-68) = (3.5-3)/((4-3)

-> (f(b)-68)/9 =(.5/1)

f(b) = 68 + 9*.5 =68+4.5=72.5

Or Finally we can state for f(b)!

(b-a)

f(b)=f(a) + ----- [f(c) – f(a)]

(c-a)

Applied to our previous case

We have

f(b)= 68 +(3.5-3)/(4-3) [77-68]

=68+4.5=72.5 as before. a b c

f(a)

F(b)

f(c)

Class problem to solve now:

Time (s) Temp (degrees F)

0.0 72.5

0.5 78.1

1.0 86.4

1.5 92.3

2.0 110.6

2.5 111.5

b-a

f(b)=f(a) + ----- [f(c) – f(a)]

c-a

Solve for the Temperature after 1.3 seconds but setup the last formula with the

Appropriate values ? .

HW #6 read/study sections 3.5-3.6 HAND IN: DO THIS HW BY HAND 19 pts
Given the Table of Time vs Temperature below
1. 5 pts Use the linear interpolation formula developed. To find The temperature at
a time of 1.7 seconds Show the formula and What values are being assigned to each part. See
example at the End of the section 3.5.
2. 5 pts Use the same formula or inverse formula but now find the time when the temperature Is

at 79.6 degrees .
Time (s) Temp (degrees F)
0.0 72.5
0.5 78.1
1.0 86.4
1.5 92.3
2.0 110.6
2.5 111.5
3. Do Exam practice problems 5, 11-13 4 pts
34. 3 pts. Linear interpolation is used to …

a. approximate a value outside of the range of known data values by determining
a line which best fits the entire data set.

b. approximate a value outside of the range of known data values by extending
the line which connects the last two known data points.

c. approximate a value inside of the range of known data values by determining a
line which best fits the entire data set.

d. approximate a value inside of the range of know data values by connecting
adjacent points in the data set with a line.

Problem Solving Applied: Freezing
Temperature of Seawater
USING C++ for linear interpolation

We examine salinity of sea water which
is the amount of salt dissolved and varies
from 33 to 38 ppt (parts per thousand)
= 3.3 to 3.8%
The higher the salinity the lower the freezing point.

Very important in Science and Engineering:
3.3%-> means-> fractional part is =33/1000 =.033
percent x 100 -> .033x100 =3.3%
Definition of % of A to B =A/B *100
%error or % difference of a measurement M to a known value
K = (M-K)/K*100 (M-K) is the error or difference
(M-K)/K is the fractional part.

Data obtained with electrical conductivity
apparatus. More salt more conductivity
-> higher Freezing point
can be established!

Salinity(ppt) Freezing Temp Fo

0 .0 32.0

10.0 31.1

20.0 30.1

24.7 29.6.

30.0 29.1

35.0 28.6

Write the program for this flow

chart IN YOUR OWN STYLE

NOT THE TEXT BOOK!

COMMENTS FOR YOU

AND A USER IS A MUST!

1. Use it to get the freezing

Temperature for a

salinity of 33 gives the

Previous calculated freezing

Point. Check the text answer against yours

2. Using the program what is the freezing

Temperature of water for a salinity of 23.6

Does your answer make sense? Why or why

Not?

DO THIS last one BY A HAND

CALCULATION TO

CHECK YOUR ANSWER..SHOW THIS ON

THE LAB EXERCISES YOU HAND IN.

HAND IN LABORATORY TASK: LAB #11`

HAND IN LABORATORY TASK: LAB #12

• Part 1. Modify the previous program to determine the salinity for a
temperature of 31.0 by reversing the technique formulas (either write a new
formula or interpret the current one in reverse. i.e. a,b,c is now temperatures
and solve for f(b) now salinity). Be careful of the check in the input data since
temperatures drop in the table while salinity were going higher)

• Do a hand calculations on the paper to show your answer makes sense using
the temperature of 31.0

• Part 2. Modify again the program using a while loop to keep asking for a
temperature and produce Salinities for 4 additional temperature cases of your
choices (see text table for reference) be sure the provided input temperature
number makes sense. When would it not. The loop should end on the entry of
a temperature value for water(your choice)!

• Hand in the final version and hand calculation on it and answers from each
part.

• Ie. Include the temperature of 31.0 and four other cases you did.

SKIP the rest of these notes FALL 18 Selection
Statements:switch Statement

If you have a problem that requires lots of selection and you find you are
nesting A bunch of IF-ELSE statements than the “switch “ statement may
be an easier Solution for your problem.

EXAMPLE: We have a large piece of machinery and a sensor inside is
picking up the Temperature, we want a status code which comes from the
Sensor depending on the temperature to alert the operator of the machine.
(sound like modern automobiles!)

Code Meaning
10 Warning Too hot, turn the system off
11 Warning check temperature every 5 minutes
13 Warning, better turn on the circulating fan
16 Emergency, Abandon the building explosion imminent
Any other number Normal operating range, no problems

The nested If-Else solution follows: Assume control variable “code” has been assigned
as an integer and value above come from the Temperature Sensor into our program

If (code==10)

{ cout << “Warning Too hot, turn the system off”<< endl;

}

Else

{

if (code== 11)

{

cout << “Warning check temperature every 5 minutes ”<< endl;

}

else

{

if (code ==13)

{

cout << “Warning, better turn on the circulating fan ” << endl;

}

else

{

if (code==16)

{

cout << “Emergency, Abandon the building explosion imminent” << endl;

}

else

{

cout << “Normal operating range, no problems” << endl;

{

{

{ NOTE ONCE ANY CONDITION IS TRUE THE PROGRAM MOVES ON

{ THIS IS EFFICIENT CODING . THE SYSTEM DOES NOT HAVE TO TEST ALL.

If (code==10)

{ cout << “Warning Too hot, turn the system off”<< endl;

}

if (code== 11)

{

cout << “Warning check temperature every 5 minutes ”<< endl;

}

if (code ==13)

{

cout << “Warning, better turn on the circulating fan ” << endl;

}

if (code==16)

{

cout << “Emergency, Abandon the building explosion imminent” << endl;

}

else

{

cout << “Normal operating range, no problems” << endl;

{

THE FOLLOWING WILL HAVE THE SAME BASIC LOGIC BUT

IS VERY BAD PROGRAMMING!

WHY? Such coding is not acceptable in this class.

The switch Statement

Syntax
switch (control_expression) {

case constant:
statement(s);
break;

[case constant:
statement(s);
break;

[…]]
[default:

statement(s);]
}

• Control expression must

be an integral type (e.g.

char, int, bool…)

• ie

• A single value!

• NEEDS #include

<stdlib.h>

• Special library.

• Break statements are not

required; without a break

statement execution ‘runs

through’ other case labels.

The switch statement to do the previous Temperature warning system would look

as follows.

The break statements just are efficient ways to pass control immediately the

statement after the switch statement. Thus saving computation time, especially if

the cases have large blocks of code. WARNING NO BREAK STATEMENT MEANS

THE NEXT CASE WILL BE EXECUTED! Not using means unstable situations can

Arise!.

switch (code)

{

case 10:

cout << “Warning Too hot, turn the system off”<< endl;

break;

case 11:

cout << “Warning check temperature every 5 minutes ”<< endl;

break;

case 13:

cout << “Warning, better turn on the circulating fan ” << endl;

break;

case 16:

cout << “Emergency, Abandon the building explosion imminent” << endl;

break;

default:

cout << “Normal operating range, no problems” << endl;

break;

{

NEXT STATEMENT (EXECUTION OF THE BREAK STARTS HERE IMMEDIATELY

/* Program money converter Robbins version of page 126 */

#include<iostream> //Required for cin, cout, endl.

#include<stdlib.h> //NEW calling on use of toupper() function

/* toupper() converts entered character to capital so switch

below will work whether you enter for example: an 'E' or 'e‘/

using namespace std;

/* To get currency dollars to country letters are entered for currency name

* E=> Euros of Italy P => Pesos OF Mexicao S= British pound */

int main()

{ double dollars, equivalentCurr;

char currencyCode;

const double ECONVERSION(0.8795), PCONVERSION(18.95), SCONVERSION(0.6529);

// Prompt and get user input from the keyboard.

cout << "Enter dollar amount to be converted" << endl;

cin >> dollars;

cout<< "Enter code for the currency\n" << "E =>for Italian Euros\nP=>Mexican Pesos\nS=British pound

sterling\n";

cin >> currencyCode;

switch (toupper(currencyCode))

{

case 'E':

cout << "Converting dollars to Italian Euros..\n";

equivalentCurr = dollars*ECONVERSION;

break;

case 'P':

cout << "Converting dollars to Mexican Pesos..\n";

equivalentCurr = dollars*PCONVERSION;

break;

case 'S':

cout << "Converting dollars to British pound sterlings..\n";

equivalentCurr = dollars*SCONVERSION;

break;

default:

cout << currencyCode << " not supported this week\n ";

equivalentCurr = dollars;

}//end switch

cout << " Equivalent amount is \n"; cout << equivalentCurr << endl; return (0);

}// end main

HAND IN LABORATORY TASK: LAB #13

• Run last Program on currency conversion found online called

• money.cpp which is my version of programs 3_3 in the text which uses the switch
statement.

• Make the modification below!

• Program converts dollars to different currencies. You input dollar amount and get the
value of a countries conversion when you enter a code for the country. Ie. You have the
value for a 1 dollar conversion!

• 1. So modify this program for Hand in which will loop continuously until the dollar
amount entered is zero or less . Dollar value controls the loop!

• 2. Look up on the web the current currency conversion for dollars for Kenya, Peru, China,
India, Papua New Guinea. Add these choices to your program

• Then run for all cases to convert $500 to the local currency with the output naming the
input curreny and output currency unit converted to fully.

• Example: $500 is equal to 200 pounds sterling

• Hand in outputs for each case with the final version of the program as usual.

Hand in HW # 7. read/study 3.7 15 pts
• Be sure to read and study the Summary section of each

• chapter to understand what you should know with the exception of the section(s) we skipped

1. 4 pts HAND IN the Exam Practice 14,15 only of Chapter 3rd ED

For the 4th edition Exam Practice 19,20

• Note for the memory snapshot 14,15 (3rd ed and questions.) and 19,20 4th ed. Show the value of
variables after the statements have been executed and any output that might occur in the end

2. Also hand in Practice problem page page 122 3rd ed and page 133 4th ed. 5 pts
ie. Convert the if/else statements to an efficient switch statement

3. Additional Memory snapshots for these program segments, A,B,C 6 pts 2 ea

A. int n1(0); count(0); B. int n1(-1),count(0); C. Int mon(1);

If (n1>0) ++count; if (n1>0) ++count; switch (mon) {

else if (n1<0) --count; else if (n1<0) -- count; case 1:

count =count+2; count=count+2; ch=“J”;

case 2:

ch=“F”;

break;

