

Outline of what we will cover
Objectives: these sections only!

1. Defining File Streams sec 5-1

2. Reading Data Files sec 5-2

3. Generating a Data File sec 5-3

4. Numerical Technique: Linear Modeling* sec 5-6

5. Problem Solving Applied: Ozone Measurements* sec 5-7

6. Be sure to run youtube video(s) in the online syllabus

(watch this one after you understand a bit of file access)

Objectives
Develop problem solutions in C++ that:

• 1. Open and close data files for input and output.

• 2. Read data from files using common looping structures.

• 3. Check the state of an input stream(incoming data).

• 4. Recover from input stream errors(prevent our program from

• crashing (if there is an input error from a file).

• 5. As an important aside for engineering we will

• Apply the numerical technique of linear modeling.

Example: Standard Input and
Output Streams

• C++ defines the cin and cout objects
to represent the standard input (keyboard) and standard output
(console).

• C++ also defines the standard error stream, cerr. Which streams
output to a standard error output device. (our screens could be
elsewhere)

• Standard input is a kind of general input stream class; standard
output and error streams are special kinds of general output
stream.

• Standard C++ library also defines

special kinds of streams for file input and output.

• #include <ifstream>

• #include <ofstream> but #include <fstream> supports both!

Defining File Streams

Stream Class Hierarchy: a bit confusing diagram in the text
but input/output operations will be clear to you by the examples we will study. For now
just take the concept
of “File stream classes” as all the functions and sub-functions provided by the C++ Standard
Library for input and output to
files. Many will be obvious once we use them. We already have
used the “iostream” class objects “cin” and “cout” connected to the standard input
(keyboard) and output devices (screen).

fstream

Example using Data files (saved as text files):we will construct a program to analyze a file
with two sets of numbers and check all values if they are negative values and then create
another data file with only the positive values from the first one. The data originally is sets of
two numbers from some kind of sensor.
CPP FILES ARE FOUND AT THE ONLINE COURSE SYLABUS SOURCE CODE SECTION. WE
CAN AND WILL CREATE DATA FILES WITH NOTEPAD (all are text files). File Sensor.dat (3rd

ed) or Sensor.txt (4th ed) used is organized as number below but best save file as “’sensor” with no
extension (automatically a txt file!) we use “.txt” in our program but not when we save to avoid
some problems with our system. Avoid for now “.dat”!
0 45

1 48
2 56
3 -1
4 10
-5 8
-6 -4
6 12 <- be sure to use the enter key here to advance to the next (blank) line in your file! Our
program will read these numbers and weed out negatives as it creates on output a data file only with
the positive set of numbers. All files have to be in the same directory as the source (.cpp) file of the
project if we do not specifically specify the director(s) the data files are in or going to be created. NOTE:
program uses the new stream object “cerr” which sends output to the standard error output device
(screen)

/*---*/

/* Program 5_1 */

/* This program reads data pairs from the */

/* the file sensor.txt and writes valid data pairs */

/* to the file checkedSensor.txt. Valid data pairs */

/* may not be negative. Invalid data is written to */

/* to standard error(cerr) */

#include<iostream> //Required for cerr

#include<fstream> //Required for ifstream, ofstream

using namespace std;

int main()

{

//Define file streams for input and output. One of several ways to do this!

ifstream fin("sensor.txt");

ofstream fout("checkedSensor.txt");

//Check for possible errors.

if(fin. fail())

{

cerr << "could not open input file sensor.txt\n";

exit(1);

}

if(fout. fail())

{

cerr << "could not open output file checkedSensor.txt\n";

exit(1);

}

//All files are open.

double t, motion;

int count(0);

fin >> t >> motion;

while(!fin.eof())

{

++count;

//Write valid data to output file.

if(t >= 0 && motion >= 0)

{

fout << t << " " << motion << endl;

}

//Write invalid data to standard error output.

else

{

cerr << "Bad data encountered on line"

<< count << endl

<< t << " " << motion << endl;

}

//Input next data pair.

fin >> t >> motion;

}//end while

//close all files. fin.close(); fout.close(); return 0; }

/*---*/

/* Program 5_1 */

/* This program reads data pairs from the */

/* the file sensor.txt and writes valid data pairs */

/* to the file checkedSensor.txt. Valid data pairs */

/* may not be negative. Invalid data is written to */

/* to standard error(cerr) */

#include<iostream> //Required for cerr

#include<fstream> //Required for ifstream, ofstream

using namespace std;

int main()

{

//Define file streams for input and output.One of several ways to do this!

ifstream fin("sensor.txt");// CLASS ifstream OBJECT FIN

ofstream fout("checkedSensor.txt"); // CLASS ofstream OBJECT fout

//Check for possible errors.

if(fin. fail())

{

cerr << "could not open input file sensor.txt\n";

exit(1);

}

if(fout. fail())

{

cerr << "could not open output file checkedSensor.txt\n";

exit(1);

}

//All files are open.

double t, motion;

int count(0);

fin >> t >> motion;

while(!fin.eof())

{ ++count;

//Write valid data to output file.

if(t >= 0 && motion >= 0)

{

fout << t << " " << motion << endl;

}

//Write invalid data to standard error output.

else

{

cerr << "Bad data encountered on line"

<< count << endl

<< t << " " << motion << endl;

}

//Input next data pair.

fin >> t >> motion;

}//end while

//close all files. fin.close(); fout.close();

return 0; }

HAND IN LABORATORY TASK: LAB #18 Read files
Create the NAME.txt file and HAND IN this last program WITH COPY OF it and the
output file created (5.1 cpp File at the syllabus-source)
Sensor.txt Be sure to hit return on last set of number. Use these
0 45
1 48
2 -56
3 -11
4 10
-5 8
-6 -4
6 12 <-hit return (Enter) key here!

Copy both the data file accessed and created. Make changes to see the consequences
for your self.
The lines ifstream fin(“name. txt”); opens the file for getting data or input to the
program.
The line ofstreamfout(“checkedSensor.txt”); creates and opens the file for data from

the program or output from the program to the file

Next are Alternative ways to open
files for input and output using the file stream classes (defined
structures for IO to files) specifically classes we have encountered
ifstream and ofstream
we define “objects” (names that are linked to the files) in these
classes as we saw before ! Study carefully examples to follow

The ifstream Class
• The ifstream (input file stream) class

is derived from istream (input
stream class).

• Thus ifstream inherits the input operator
and member functions eof() and fail()
defined in istream. eof() function was
used in the last program in the loop
command “while”

• The fail() function was used twice in the
last program to be sure the files were
available at the default place. See the
two if statements that used it

• The ifstream class also defined
specialized methods specific to working
with files.

Input File Streams (alternative ways open files for input)

In the program we used #include<fstream> and the following:

• ifstream fin("sensor.txt"); opens the file for input

• then used (object “fin”)

• if(fin. fail()) to test for the file and

• fin >> t >> motion; to get the data

• We can setup data files used for input by using an ifstream object as fin above but a different name
“sensor1” below associated with it and can be defined This way!

ifstream sensor1; creates object “sensor1” but does not open file.
sensor1 can do what fin did before

sensor1.open(“sensor1.txt”); //just opens the file then we check if the file
is open as before. IE object sensor1 calls open() function!

- Or just check open and check alternatively as follows.
ifstream sensor1(“sensor1.txt”); will open the file(similar to “fin” above)
if(!sensor1) // checks if file is open alternate to calling fail()!
HERE “sensor1” is the object in the ifstream class
Now we can use the object name for input to the program like “cin” for keypad
or “fin” above for files.

sensor1 >>t>>motion; // reading the data in the file(similar to “fin” above)

NOTE: always show a few lines of input on the screen to be sure you are
reading the file correctly ie use cout! To see data on the screen since the
file object does not do that!
E.g.sensor1>>t>>motion;

cout>>t>>motion;//lets us see the data every time it is read from a file

Avoiding Bugs
• If opening the named file fails, the fail

error bit is set, and all statements to read from the file will be
ignored.

• NO error message will be generated but the program will continue to
execute. So we used as before the “cerr” To get a message to us, see
below!

• So we Checked to be sure that the open was successful using the

• fail() method of the istream class returns false. (ifstream inherits functions
from the istream!) “a bit technical here”

• So we used cerr To get a message to us! And then use exit(1) to stop the
program. in the last program we had lines like

• If (fin.fail()) { // as before

• cerr << ”could not open input file\n”;

• exit(1);

• }

• USING THE CLASS OBJECT ALTERNATE METHOD TO DO THIS IS NEXT!

Input File Example using an ifstream object
name (sensor1 here) to check file opening (ALTERNATE
APPOACHES!)
ifstream sensor1;

sensor1.open("sensor1.txt");

if (sensor1.fail()) //open failed-preferred

{ cerr << “File sensor1.txt could not be opened";

exit(1); //end execution of the program

}

Alternative 3:

ifstream sensor1(“sensor1.txt”);

if(!sensor1) // open failed- a more direct way

{ cerr << “File sensor1.txt could not be opened";

exit(1); //end execution of the program

}

getting dizzy? Stick to a method your comfortable with

and don’t worry but be sure to know these variations exist

The ofstream Class

• The ofstream (output file
stream) class is derived from
ostream (output stream class).

• Thus ofstream inherits the
output operator and member
functions ostream.

• The ofstream class also defines
specialized methods specific to
working with files.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Output File Modes (Alternate methods)
• WE USED IN THE FIRST PROGRAM

• ofstream fout("checkedSensor.txt");

• Which defined the object fout and created and opened

the file for output from the program to the file

• If we use just define our object with

• ofstream balloon: // Defines the object balloon then WE USE->

• balloon.open (“balloon.txt”) which calls on the function open() a
member function of the ofstream class. And a file for output in this way
will either be created if it doesn’t already exist or overwrite a previously
existing file with the same name! (this will DESTROY the existing file be
careful if you want the data avoid this!).

IF we wish to simply append (add new data) i.e. new content to the
previously existing file, we open the file in append mode:

balloon.open(“balloon.txt”, ios::app);

• Rarely errors happen when we open a file to output so we don’t check for
errors but be careful about previously existing ones!!

Output File Streams alternative
ways to output to a file data
• In our first program we used

• ofstream fout("checkedSensor.txt");

• if(fout.fail()) to check for the file

• And

• fout << t << " " << motion << endl

• To write data to the file (note the space inserted)

• Now using the class approach Each data files used for output must
have an ofstream object associated with it:

ofstream balloon;
balloon.open(“balloon.txt”);

- Or just –
ofstream balloon (“balloon.txt”);
In the last twp statements we initialized the object balloon to
link to the data file balloon.txt to write data to it!
Now just like “cout” for screens or “fout” for files we can use the
object name for output to the file
Illustration to write to the file ballon.txt
Balloon <<time <<“ “ << height << “ “<< velocity/3600<< endl;

The latter values all go into the associated file (balloon.txt).

Closing open input or output files

• The close(), (ie.close the file access),
methods for both input and output stream
objects may be called when the program is
done with a file if needed. For the previous 2
examples

• sensor1.close();

• Balloon.close()

• i.e. each object has an associated file it
reads(sensor1.txt) or writes to (Balloon.txt)

• The files will be closed automatically when the
program exits with a return 0 use of exit().

Accessing a file with its name!
very import for engineering and science files

• When you use a string class to represent the file
name, you must use the special function c_str()
method to provide the appropriate type for use
in input and output. Illustrated as follows for an
output file

• string filename; (“filename” is the string variable
you will put the real file name into)

• Used as follows to access a file for output here.

• cout << “Enter the name of the file you want to
open for output”

• cin >> filename;

• Balloon.open (filename.c_str());

Hand in HW #11 40 PTS (5 EACH) ANSWER CAREFULLY
Read and Study section 5-1 and carefully pick the correct answer to the following quesitions.

Use QUESTION NUMBER AND letter answers in the HW.
1. The class name used to declare a user defined input file is …

A. inFile B. ifstream C. iostream D. istream

2. Which include statement must you use to define and use files A. #include<ifstream>
B.#include <filestream> C. #include <cstream> D. #include <fstream>

3. Which of the following statements correctly declares the input file object MyInput and
initializes the file object to read the file exam.txt? A. ifstream MyInput("exam.txt");

B MyInput ifstream("exam.txt"); C ifstream MyInput(exam.txt); D.MyInput ifstream (exam.txt);
4. What is the next step in using a file, after the file has been declared with the following

statement? ofstream AnsFile; A. You use the file to input a variable.
B. You use the file by outputting a value to it. C.You search for a file named AnsFile.

D. You open the file, and associate it with a specific file name.
5. Which of the following statements correctly opens the output file object AnsFile to store

answers into file myanswers.txt ? A. AnsFile.open("myanswers.txt");
B. open.AnsFile("myanswers.txt"); C. open.AnsFile(myanswers.txt); D. AnsFile.open(myanswers.txt);

6. Which of the following statements will properly store the number from variable value into
the output file object AnsFile? A. AnsFile << value; B. AnsFile << cout << value;

C. cout << AnsFile << value; D. store.AnsFile(value);
7. Read a number from the input file object MyInput into variable value

A. MyInput >> value; B. MyInput >> cin >> value; C. cin >> MyInput >> value; D. value = read.MyInput();

8. Which of the following statements will close the output file object AnsFile from the previous
question? A. close.AnsFile; B."myanswers.txt".close; C.AnsFile.close();
D. AnsFile.close ("myanswers.txt ");

Reading Data Files
How do we know how the data is setup in a file we

want to use?.

We have to know certain things about the file before

we proceed. Such information is usually available by those

who created the file.

We need to know

1. The name of the file

2. The order and data type of values stored, so we can

declare the appropriate variables (identifiers) correctly.

3. How much data is in the file. We usually know the

structure of the data files which can be of THREE file types.

Knowing the structure helps us decide how we can set up

our programs to identify and get all the data.

WE WILL COVER THE THREE TYPE BUT BE SURE TO STUDY THE

PROGRAMS TO COME THAT DEMONSTRATE HOW TO GET THE DATA!

USE THEM AS A MODEL FOR YOUR WORK

Data File Formats(The 3 types!)
• .Three common structures: There are three common

• structures used to do this. NAMELY

• A. The first line contains the number of lines (records) in the file.
Similar to the counter control we saw before. First value becomes
the final counter.

• for(int i=1; i<=counter; ++i)

• B. The file has a special value not normal for the file , like -99
or 0 as the last value to let us know we are finished reading the
records. Known as a trailer signal or sentinel signal. Similar to
the while loop technique of the last chapter.

• while(exam_score>=0)

• C. End-of-file loop. File stream lets us know when we reached
the end with the eof() function. Like the end of data loop from
keypad while(! cin.eof()) we use value of object returned

• E.g. while(!sensor.eof()) would loop to the end of file!

Type A: Data file with Specified Number of Lines: First entry
has that number and thereafter data is in pairs, containing
time a motion sensor reading.

STUDY PROGRAM THAT FOLLOWS!

sensor1.txt

10

0.0 132.5

0.1 147.2

0.2 148.3

0.3 157.3

0.4 163.2

0.5 158.2

0.6 169.3

0.7 148.2

0.8 137.6

// SOME CODE TO open input file
ifstream sensor1(“sensor1.txt”);
//read the number of data entries
int numEntries;
sensor1 >> numEntries;
//read every row
double t, y;
for (int i = 0; I < numEntries; i++) {

sensor1 >> t >> y;
//do something with the data

}

/* Program chapter5_2 */

/*program generates a summary report from a data file that has the number of data points in the first record.*/

#include <iostream> //Required for cerr, cin, cout.

#include <fstream> //Required for ifstream, ofstream.

#include <string> //Required for string.

using namespace std;

int main()

{int num_data_pts, k; // Declare and initialize objects.

double time, motion, sum = 0, max, min;

string filename;

ifstream sensor1;

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for name of input file. Here sensor1.txt

cin >> filename;

sensor1.open(filename.c_str()); // Open input file.

if (sensor1.fail()) // check if file exists

{ cerr << "Error opening input file" << filename << endl;

exit(1);

}

report.open("sensor1Report.txt"); // Open output report file.

sensor1 >> num_data_pts; // Read first value.

sensor1 >> time >> motion; // Read first data pair from input file

cout << time <<motion; // echo file data to console in case of problems

max = min = motion; //and set motion value to initial max and min

sum += motion; // build a sum of the motion value-> sum=sum+motion. (sum was 0)

// Read remaining data and find max and min values of the motion and compute summary information.

for (k = 1; k<num_data_pts; k++)

{sensor1 >> time >> motion;

cout << time <<motion; // echo file data to console in case of problems

sum += motion;

if (motion > max)

{max = motion;

}

if (motion < min)

{min = motion;

}

} // end of the for loop which has found the maz and min and sum of the motion data

// Set format flags.

report.setf(ios::fixed); // start to prepare a report file- note use of format flags see chap 2

report.setf(ios::showpoint);

report.precision(2); // manipulator chap 2

report << "Number of sensor readings:" << num_data_pts << endl;//build report file and summary information.

report << "Average reading: " << sum / num_data_pts << endl;

report << "Maximum reading: " << max << endl;

report << "Minimum reading: " << min << endl;

sensor1.close(); // Close files and exit program.

report.close();

return 0;

} //end main

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

/* Program chapter5_2 */

/*program generates a summary report from a data file that has

the number of data points in the first record.*/

#include <iostream> //Required for cerr, cin, cout.

#include <fstream> //Required for ifstream, ofstream.

#include <string> //Required for string.

using namespace std;

int main()

{ int num_data_pts, k; // Declare and initialize objects.

double time, motion, sum=0, max, min;

string filename;

ifstream sensor1;

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for

name of input file.

cin >> filename; ?? Use extension .txt for data file here

sensor1.open(filename.c_str()); // Open input file.

if(sensor1.fail())\\ check if file exists

{ cerr << "Error opening input file" << filename << endl;

exit (1);

}

report.open ("sensor1Report.txt"); // Open output report file.

sensor1 >> num_data_pts; // Read first value.

sensor1 >> time >> motion; // Read first data pair from input

file

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

max=min=motion; //and set motion value to initial max and min

sum += motion; // build a sum of the motion value-> sum=sum+motion.

(sum was 0)

// Read remaining data and find max and min values of the motion and

compute summary information.

for (k=1; k<num_data_pts; k++)

{ sensor1 >> time >> motion;

sum += motion;

if (motion > max)

{ max = motion;

}

if (motion < min)

{ min = motion;

}

} // end of the for loop which has found the maz and min and sum of

the motion data

// Set format flags.

report.setf(ios::fixed); // start to prepare a report file- note use of

format flags see chap 2

report.setf(ios::showpoint);

report.precision(2); // manipulator chap 2

report << "Number of sensor readings: << num_data_pts << endl; "//build

report file and summary information.

report << "Average reading: " << sum/num_data_pts << endl;

report << "Maximum reading: " << max << endl;

report << "Minimum reading: " << min << endl;

sensor1.close(); // Close files and exit program.

report.close(); return 0;} //end main

Data generated
in the report file looks like
• Number of sensor readings 10

• Average reading: 149.77

• Maximum reading: 169.30

• Minimum reading: 132.20

Type B:Trailer/Sentinel Signal: similar data as Type
A but last values are unique

sensor2.txt

0.0 132.5

0.1 147.2

0.2 148.3

0.3 157.3

0.4 163.2

0.5 158.2

0.6 169.3

0.7 148.2

0.8 137.6
-99 -99

//open input file
ifstream sensor2(“sensor2.txt”);
double time, motion;
//read first values
sensor1 >> time >> motion;
//do something with the data
//enter loop
do { //do something with the data
// get next set of data
sensor1 >> time >> motion
} while (time>=0);//last value?

/* Program chapter5_3 This program generates a summary report from a data file that has a trailer record

with negative values.*/ */

#include <iostream> //Required for cin, cout, cerr

#include <fstream> //Required for ifstream, ofstream

#include <string> //Required for string.

using namespace std;

int main()

{ int num_data_pts(0), k; // Declare and initialize objects.

double time, motion, sum(0), max, min;

string filename;

ifstream sensor2; //define input and output objects

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for name of input file.

cin >> filename;

sensor2.open(filename.c_str()); // Open input file

if(sensor2.fail()) // bad name we are out of here!

{ cerr << "Error opening input file\n";

exit(1);

}

report.open("sensor2Report.txt"); // Open output report file.

sensor2 >> time >> motion; // get first data set

max = min = motion; // Initialize min and mzx using first motion data point.

do // Update summary data until trailer record read.

{ sum += motion;

if (motion > max)

{ max = motion;

}

if (motion < min)

{ min = motion;

}

num_data_pts++; // counting data points -> num_data_pts=num_data_pts+1;

sensor2 >> time >> motion;

} while (time >= 0); //is it the end of the set yer?

. report.setf(ios::fixed); // Set format flags for output report

report.setf(ios::showpoint);

report.precision(2);

report << "Number of sensor readings: " << num_data_pts << endl // Print summary information.

report << "Average reading: “ << sum/num_data_pts << endl

report << "Maximum reading: “ << max << endl

report << "Minimum reading: “ << min << endl; // see text example will that work as shown for this part????

// Close files and exit program.

sensor2.close();

report.close();

return 0;

} //end main

NOTE: we get the about the same report as the last example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

/* Program chapter5_3 This program generates a summary report

from a data file that has a trailer record

with negative values.*/ */

#include <iostream> //Required for cin, cout, cerr

#include <fstream> //Required for ifstream, ofstream

#include <string> //Required for string.

using namespace std;

int main()

{ int num_data_pts(0), k; // Declare and initialize objects.

double time, motion, sum(0), max, min;

string filename;

ifstream sensor2; //define input and output objects

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for

name of input file.

cin >> filename; // use extension “txt”

sensor2.open(filename.c_str()); // Open input file

if(sensor2.fail()) // bad name we are out of here!

{ cerr << "Error opening input file\n";

exit(1);

}

report.open("sensor2Report.txt"); // Open output report file.

sensor2 >> time >> motion; // get first data set

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

max = min = motion; // Initialize min and mzx using first motion

data point.

do // Update summary data until trailer record read.

{ sum += motion;

if (motion > max)

{ max = motion;

}

if (motion < min)

{ min = motion;

}

num_data_pts++; // counting data points ->

num_data_pts=num_data_pts+1;

sensor2 >> time >> motion;

} while (time >= 0); //is it the end of the set yer?

. report.setf(ios::fixed); // Set format flags for output report

report.setf(ios::showpoint);

report.precision(2);

report <<"Number of sensor readings: " << num_data_pts << endl.

report << "Average reading: “ << sum/num_data_pts << endl

report << "Maximum reading: “ << max << endl

report << "Minimum reading: “ << min << endl;

sensor2.close(); // Close files and exit program.

report.close();

return 0;

} //end main NOTe we get the about the same report as last cpp

EOF-based File: no initial value and no end value we
depend on the system knowing the file has while we
read it.

sensor3.txt

0.0 132.5

0.1 147.2

0.2 148.3

0.3 157.3

0.4 163.2

0.5 158.2

0.6 169.3

0.7 148.2

0.8 137.6

sum=count=0; // consider this example
data1 >>x // input object gets x
While (!data.eof())

{ ++count;
sum=+=x;
data >> x;

}
// another approach for next program
double t, y;
ifstream sensor3(“sensor3.txt”);//open input
//read first row
sensor1 >> t >> y; // maybe do something
while (! sensor3.eof()) {

//do something with the data
sensor1 >> t >> y;?? try get next set

} // if last attempt failed then while
// loop will end

/* Program chapter5_4 This program generates a summary report from a data file that does not have a header

record or a trailer record.*/

#include <iostream> //Required for cin, cout, cerr

#include <fstream> //Required for ifstream, ofstream.

#include <string> //Required for string.

using namespace std;

int main()

{ int num_data_pts(0), k; // Declare and initialize objects (variables and i0 objects pointing to files).

double time, motion, sum(0), max, min;

string filename;

ifstream sensor3;

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for name of input file.

cin >> filename;

sensor3.open(filename.c_str()); // Open file and check if it exists.

if(sensor3.fail())

{ cerr << "Error opening input file\n";

exit(1);

}

report.open("sensor3Report.txt"); // open report file.

sensor3 >> time >> motion; // initial input read the first data point.

while (!sensor3.eof()) // While not at the end of the file, read and accumulate information

{ num_data_pts++;

if (num_data_pts == 1)

{ max = min = motion;

}

sum += motion;

if (motion > max)

{ max = motion;

}

if (motion < min)

{ min = motion;

}

sensor3 >> time >> motion; // input next go back to while

} // end while

// Set format flags.

report.setf(ios::fixed);

report.setf(ios::showpoint);

report.precision(2);

// Print summary information.

report << "Number of sensor readings: “ << num_data_pts << endl // will the use of report output work here?

<< "Average reading: << sum/num_data_pts << endl

<< "Maximum reading: “ << max << endl

<< "Minimum reading: " << min << endl;

// Close file and exit program.

sensor3.close();

report.close();

return 0;

} //end main

/*--*/

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

/* Program chapter5_4 This program generates a summary report

from a data file that does not have a header

record or a trailer record.*/

#include <iostream> //Required for cin, cout, cerr

#include <fstream> //Required for ifstream, ofstream.

#include <string> //Required for string.

using namespace std;

int main()

{ int num_data_pts(0), k; // Declare and initialize objects

(variables and i0 objects pointing to files).

double time, motion, sum(0), max, min;

string filename;

ifstream sensor3;

ofstream report;

cout << "Enter the name of the input file"; // Prompt user for

name of input file.

cin >> filename;

sensor3.open(filename.c_str()); // Open file and check if it

exists.

if(sensor3.fail())

{ cerr << "Error opening input file\n";

exit(1);

}

report.open("sensor3Report.txt"); // open report file.

sensor3>>time>>motion;//initialinput read the first data point.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

while (!sensor3.eof()) // While not at the end of the file,

read and accumulate information

{ num_data_pts++;

if (num_data_pts == 1)

{ max = min = motion;

}

sum += motion;

if (motion > max)

{ max = motion;

}

if (motion < min)

{ min = motion;

}

sensor3 >> time >> motion; // input next go back to while

} // end while

// Set format flags.

report.setf(ios::fixed);

report.setf(ios::showpoint);

report.precision(2); // Print summary information.

report << "Number of sensor readings: “ << num_data_pts << endl

<< "Average reading: << sum/num_data_pts << endl

<< "Maximum reading: “ << max << endl

<< "Minimum reading: " << min << endl;

sensor3.close(); // Close file and exit program.

report.close(); return 0;} //end main

A note on Writing to Files

• After opening an output file, writing to
a file is no different from writing to standard
output.

• Must decide on a file format.

• Sentinels can be hard to choose to avoid conflict with
valid data.

• Knowing in advance how many lines/records are in the
file is sometimes difficult or impractical.

• Usually best to use eof-style file format where file
structure contains only valid information.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

LAB #19 HAND IN LABORATORY TASK:

reading files with eof()
Consider the following data of time, motion (sensor) and temperature

0.0 132.5 24.6 Construct a data file with this data. Use notepad but

0.1 147.2 19.3 not a word processor which would put control characters

0.2 148.3 88.3 in the file. Then using the programing model of getting data from a

0.3 157.3 23.7 file with eof() function read the three values in the sets

0.4 163.2 08.5 Produce similar to previous examples a report file

0.5 158.2 54.7 Nicely worded

0.6 169.3 39.9 1. The total number of records

0.7 148.2 43.6 2. The average motion sensor reading and temperature

0.8 137.6 76.9 3. The maximum motion sensor reading and temperature values

4. The minimum motion sensor and temperature values

Hand in your program file, the data file and the report file (use notepad for the

last two to print these files)

Recall where you have to place the data file to make your program find it?

Name the file what you want.

Copy the contents of the report file and place it in the usual output place when

Handing in your work.

EXTRA Credit write a program that creates the data file! +1 on final average! Or add this

Extension to the main program as the first part.

Numerical technique “Linear Modeling”
• Linear modeling also called Linear regression is the name given to the

process that determines the linear equation (y = mx + b) that is the best fit
to a set of data points. Assuming the data looks close to a straight line!

• Linear regression does this by minimizing the squared distance

• between the line created and the original data points.

• Data table below is for points on graph (circles) whose connection looks like a
straight line so we use this technique.

• Time(s) Temp (oF) Vertical distance from data points to linear curve

• 0 0 are each squared and these squared values are summed

• 1 20 The created line has the smallest sum of these squared

• 2 60 values, called the “least-squares” distance

• 3 68

• 4 77

• 5 110

Solving for Linear Model Parameters
Once we set up an expression representing values of x,y of the new

Linear curve and there distance from each of the data points

xk yk we use the curve y=mx+b along with the data points for our

Expression and then take derivative of the sum expression to minimize.

The results yield the equations below that define the line y=mx+b

If you want to learn more see on the web: https://en.wikipedia.org/wiki/Linear_regression

The large S (SIGMA), you may recall

Represents a summation

• S xk = x1+ x2 …xn
• Similarly, the sums Are constructed

• And the calculation as shown

• Yields the m and b of the

• y=mx+b curve

• Which is normally plotted along

• with The original data points as

• in the figure on the last slide.

• NOTE: Denominators are same for m

• and b! Evaluate all for this EG case !

Given 3 points: x1,y1 ; x2,y2 ; x3 y3

WHAT DOES EACH m and b look like!

IN CLASS NOW!!!! S xk = x1 + x2 +x3 etc.

Problem Solving Applied: Ozone
Measurements
be sure to read section 5.7

This illustration will show
that we easily can construct
summation in loops, as you have
seen before when Taking
averages for example.

Linear regression Applied: Ozone Measurements
Data from spacecraft gave ozone data (Ozone Mixing Ratio
in ppmv -parts per million volume)
for different altitudes (km) and we want to get values for the
ozone at other altitudes in between.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Ozone Measurements*

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Ozone Measurements*

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Ozone Measurements

Refining our solution to C++ we will need a counter=0

Then variables for the sums, sumx sumy sumxy sumx2 (squared)

Then a while loop to do get the data x,y and build the sums as we get them.

Also counting the points and then do the computation for the slope and

y intercept. Print all the goodies

More refinements on the code

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Looking at the formulas below to solve for m and b

which include various sums and I already have some “sum”

Variables. THUS, I can put Together a little code

by matching my variables to the Formulas as follows

denominator = sumx*sumx - count*sumx2;

m = (sumx*sumy - count*sumxy)/denominator;

b = (sumx*sumxy - sumx2*sumy)/denominator;

// used in program to follow.

Other aspects of Linear Regression

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Once we have our line we are concerned on how well does the line

Fit the original data. Various statistical calculations are used to

Evaluate our line for its ability to be the best fit.

When you take your physics laboratory course you will be using

Software that will do the linear regression calculation for you from data

You collect in some experiments. The software will plot the line and then

Give you a number known as the Correlation which if it has the value

1 is a perfect fit but mostly is some fraction. The closer the fraction to 1

the better the fit.

Other statistical calculations related to the Correlation are

The mean

The variance

The deviation

The standard deviation

You will return to these in later courses.

The web has many references to these concepts if you want to

Explore them.

THE LEAST SQUARE LINEAR REGRESSION PROGRAM FOLLOWS.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

/* Program chapter5_8 */

/* This program computes a linear model for a set of altitude and ozone mixing ratio values. */

#include <iostream> //Required for cin, cout

#include <fstream> //Required for ifstream

#include <string> //Required for string

using namespace std;

int main()

{// Declare and initialize objects.

int count(0);

double x, y, first, last, sumx(0), sumy(0), sumx2(0),

sumxy(0), denominator, m, b;

string filename;

ifstream zone1;

cout << "Enter name of input file:";

cin >> filename;

// Open input file.

zone1.open(filename.c_str());

if(zone1.fail())

{ cerr << "Error opening input file\n";

exit(1);

}

zone1 >> x >> y; // While not at the end of the file, read and accumulate information

while (!zone1.eof())

{ ++count;

if (count == 1)

first = x;

sumx += x;

sumy += y;

sumx2 += x*x;

sumxy += x*y;

zone1 >> x >> y;

}

last = x;

denominator = sumx*sumx - count*sumx2; // Compute slope and y-intercept.

m = (sumx*sumy - count*sumxy)/denominator;

b = (sumx*sumxy - sumx2*sumy)/denominator;

// Set format flags

cout.setf(ios::fixed);

cout.precision(2);

// Print summary information.

cout << "Range of altitudes in km: \n";

cout << first << " to " << last << endl << endl;

cout << "Linear model: \n";

cout << "ozone-mix-ratio = " << m << " altitude + "

<< b << endl;

// Close file and exit program.

zone1.close();

return 0;

} // end of main

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

/* Program chapter5_8 */

/* This program computes a linear model for a set of altitude and

ozone mixing ratio values. */

#include <iostream> //Required for cin, cout

#include <fstream> //Required for ifstream

#include <string> //Required for string

using namespace std;

int main()

{// Declare and initialize objects.

int count(0);

double x, y, first, last, sumx(0), sumy(0), sumx2(0),

sumxy(0), denominator, m, b;

string filename;

ifstream zone1;

cout << "Enter name of input file:";

cin >> filename;

// Open input file.

zone1.open(filename.c_str());

if(zone1.fail())

{ cerr << "Error opening input file\n";

exit(1);

}

zone1 >> x >> y; Get first data set

// While not at the end of the file, read and accumulate

information follows

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

while (!zone1.eof())

{ ++count;

if (count == 1)

first = x;

sumx += x;

sumy += y;

sumx2 += x*x;

sumxy += x*y;

zone1 >> x >> y;

}

last = x;

denominator = sumx*sumx - count*sumx2; // Compute slope and y-

intercept.

m = (sumx*sumy - count*sumxy)/denominator;

b = (sumx*sumxy - sumx2*sumy)/denominator;

cout.setf(ios::fixed); // Set format flags

cout.precision(2);

cout << "Range of altitudes in km: \n"; // Print summary

cout << first << " to " << last << endl << endl;

cout << "Linear model: \n";

cout << "ozone-mix-ratio = " << m << " altitude + "

<< b << endl;

// Close file and exit program.

zone1.close(); return 0; } // end of main

HAND IN HW #12 (4 PTS EACH 44 TOTAL

PTS
Do chap 5 exam practice 1-5, 8-11 Memory snapshot only for exam practice 8 to 11

ANSWER CAREFULLY 12-13

12. Which of the following repetition constructs will properly repeat the loop body

while not at the end-of-file for input file object DataFile

A. while(! DataFile B. while (! eof()) C, while (! DataFile.eof())

D. while (! eof.DataFile())

13. Given the name of the file you want to open has been stored in a string object

filename, which of the following will statements will correctly open the file.

A. inFile.open(filename); B.inFile.open(c_str.filename());

C. inFile.open(filename.c_str()); D. inFile.open("filename");

0 100.0

0.1 109.4

0.2 113.1

0.3 121.4

0.4 128.8

0.5 135.7

0.6 143.3

0.7 144.1

0.8 148.6

0.9 144.7

1 130.7

1.1 151.0

1.2 152.2

1.3 159.9

1.4 162.6

1.5 169.7

HAND IN LABORATORY TASK: LAB #20 each step to help you organize is

numbered!

Cruise missile

fired from AGM-84

Time Velocity

Obtain a linear fit to the data. output to monitor and report file (part 6)

1. create a data file read data into your program.

2. Calculate Slope and

3. initial velocity (y intercept) of best fit

4. Obtain the velocity at 0.85 seconds from the linear fit.

5. In the output to the screen show EACH OF THE FOLLOWING

Slope =m=?

Initial velocity (intercept, V0 =?)

The straight line formula of Velocity vs time. Velocity =m* time + V0 .

Value of the Velocity at 0.85 seconds =?

6. Also send all info derived above

To a recording data file.

Attach printout of the file and

screen to Your program to hand in

