
Creating and calling your own functions from main()

Outline chap 6 Read study
sections 6.1-6.5,6.9-6.11

Objectives

1.Modularity

2.Programmer-Defined Functions

3.Parameter passing

4.Numerical Techniques with C++ (Roots of Polynomials and Numerical
integration)

Be sure to run you tube video(s) in the online syllabus

Outline
Objectives topics for you to master

1. Modularity

2. Programmer-Defined Functions

3. Parameter Passing

4. Problem Solving Applied: Calculating a Center of Gravity

5. Random Numbers

6. Numerical Technique: Roots of Polynomials*

7. Problem Solving Applied: System Stability*

8. Numerical Technique: Integration*

More on Objectives
Develop problem solutions in C++ containing:

Functions from the standard C++ library.

Programmer-defined functions.

Functions that generate random numbers

Simulation Techniques.

Techniques for finding real roots to polynomials.

Numerical integration techniques.

Modularity
A problem solution contains numerous
functions. Not just main() which must be included
◦ main() is a programmer defined function.
◦ main() often references functions defined in one of the

standard libraries.
◦ main() can also call other programmer defined functions.

These programmer defined Functions, or modules,
are independent statement blocks outside of
main() that are written to perform a specialized
task and are called to do their task from main().

Modules
A C++ source program can be thought of as an ordered collection of
executable tasks:

◦ input data

◦ analyze data

◦ output results

In C++ these tasks can be performed using programmer defined functions
and types.

We can test the modules separately and can be used many times.

Program lengths can be shortened by modules.

Details can be hidden in modules so you don’t always have to know exactly
how the module works. E.G. you need the squareroot and call sqrt() from
cmath but you are not concerned how the function (module) did the
calculation.

The latter is called abstraction (ie hide details) and modules become “black
boxes”.

Modular Problem Solutions

Complex problems can be broken down
into sub tasks performed on and/or by objects, making it easier to implement in C++.

Modular, object-oriented programs have significant advantages over writing the
entire solution in main():

◦ Multiple programmers

◦ Testing/Debugging/Maintaining

◦ Reduce duplication of code

◦ We have been using pre-defined functions from libraries (cmath)

◦ Eg. sin() log() etc

◦ Now we can create our own library of functions we have built with modules or user defined
functions. The user here is us the programmer.

Functions or modules
Can be defined to:
◦ 1. return a single value to the calling function.

◦ Eg. sin(x) returns a value but does not change the
value of x in main()!

◦ 2. perform a data independent task.

◦ A function to print a report!

◦ 3. Modify data in calling context via the parameter list
(pass by reference.) ie can change values of variables in
main

◦ More Examples to follow but the basic idea is the
functioned called will change the value of variables in
main().

Value Returning Functions

A value returning function returns a
single value to the calling program.

The function header declares the type of value to be returned.

A return statement is required in the statement block.

START
MAIN

“NOT
DEFINED”

N>1

FACTORIAL(N)

RETURN
NFACT

END
RETURN 0

NFACT=1

NFACT=NFACT*N
N - -

READ N

FACTORIAL(N)

N>0?

CALLING FUNCTION FACTORIAL(N)!

CALL
TRUE

TRUE

NOTES: The value of the Variable N in main is passed to the function

And does not change in main.

VARIABLE NFACT IN THE FUNCTION IS NOT KNOWN

TO MAIN ONLY THE RETURNED VALUE GOES BACK TO MAIN!

Example –Calling the Factorial Function
from main()-value returning function

//return name argument type
int factorial(int n);//function prototype(defines its type)
int main() {

int num;
cin >> num;
if (num>=0) // The call argument(matches parameter)

cout<< num<<"! is “<<factorial(num)<< endl;
//n is the argument of the

//factorial function call
else
cout <<"not defined for negative numbers"

<< endl;
return 0;

} //end main
HERE IS WHERE THE FUNCTION IS PLACED IE AFTER MAIN() (sometimes before)

Example “value returning” - Factorial
In math:

◦ n! = n*(n-1)*(n-2)*…*1

◦ n is a positive integer

◦ 0! is 1 by definition

//function definition: n! = n*(n-1)*(n-2)*…*1
// 0! is 1 by definition
//Function factorial returns n!
//Function factorial assumes n is non-negative int

int factorial(int n) // <-function header note: num->n
//function header has the function name and shows

what is returned here an int! and “n” is named a
“parameter” which matches the “argument” of the
The argument in the call
{ int nfact = 1;

while (n>1) {
nfact = nfact * n;

n--;
} //end while block
return nfact;

//return sends value back to the call
} //end factorial WE CONSIDER n=3 & play computer!!!

Function Prototype in the last
example

In C++, identifiers must be defined
before they may be referenced. I.e. function prototype!

Since the main function is the entry point for the
application, we like to have it appear near the beginning
of the program.

i.e. “function prototypes” put just before int main(){..

A “ function prototype” provides sufficient information
for the compiler to process references to the function.

◦ The definition may then be provided later in the code.

Function Prototype examples
for value returning functions

Syntax:
return-type function_name ([parameter_list]);

Examples Valid References Invalid References

double sinc(double);
double sinc(double x);

Assume double
y(-5);
sinc(y)
sinc(1.5)
sinc(10)
sinc(0.0)

sinc(“hello”)
sinc(‘0’)
sinc(cout)

Double celsiusToFahr(double Celsius) 100 ‘100’(string!)

This is used in the next program note variable name in function
Prototype is optional just type is ok!

Hand in HW #13 25 pts.
What will this program segment do?

show table of all variables and detailed output as usual!

a=7; b=10;

c= pyth(a,b);

cout << “The mystery result = “<< c<<“.”;

return (0);

}

float pyth (float x, float y)

float c1,c2;

{

c1 = pow(x,2) +pow (y,2);

c2 = sqrt(c1);

return (c2);

}

/* Chapter6_1.cpp An example using a call to a function that returns a value! One argument to match one parameter */

#include<iostream> //Required for cin, cerr

#include<fstream> //Required for ifstream, ofstream

#include<string> //Required for string, c_str()

using namespace std;

double celsiusToFahr(double celsius); //Programmer defined function. Function prototype

/* Program chapter6_1 This program reads temperatures in degrees Celsius */

/* from an input file, calls a conversion function and writes converted temperatures to an output file. */

int main()

{

ifstream fin; //Declare variables

ofstream fout;

string filename;

double cels, fahr;;

//Open files.

cout << "Enter name of input file\n ";

cin >> filename;

fin.open(filename.c_str());

if (fin.fail())

{

cerr << "Could not open the file " << filename << endl;

exit(1);

}

fout.open("CelsiusToFahr.dat");

fin >> cels;

while (!fin.eof()) //while not end of file

{

fahr = celsiusToFahr(cels); //Function call. //Convert temperature and write to file.

cout << cels << " " << fahr << endl; // echo to screen to check values

fout << "Celsius = "<<cels<< " Equivalent Farenheit=" <<fahr << endl;

fin >> cels;

}

fin.close();

fout.close();

return 0;

} // end of main()

/*---*/

/* This function performs a conversion from degrees Celsius to degrees Fahrenheit. */

/* Precondition: celsius holds a temperature in degrees Celsius */

/* Postcondition: returns degrees Fahrenheit */

double celsiusToFahr(double celsius) //Function header.

{

double temp; //Declare local variables

temp = (9.0 / 5.0)*celsius + 32.0; //Convert from degrees celsius to degrees Fahrenheit.

return temp;

} // end of the function

/* An example using a call to a function that returns a value! One argument to match one

parameter */

#include<iostream> //Required for cin, cerr

#include<fstream> //Required for ifstream, ofstream

#include<string> //Required for string, c_str()

using namespace std;

double celsiusToFahr(double celsius); //Programmer defined function.Function prototype

/* Program chapter6_1 This program reads temperatures in degrees Celsius */

/* from an input file, calls a conversion function and writes converted temperatures to an

output file. */

int main()

{

ifstream fin; //Declare objects

ofstream fout;

string filename;

double cels, fahr;;

//Open input file.

cout << "Enter name of input file\n ";

cin >> filename;

fin.open(filename.c_str());

if (fin.fail())

{

cerr << "Could not open the file " << filename << endl;

exit(1);

}

// open output file

fout.open("CelsiusToFahr.dat");

// get first input data

fin >> cels;

while (!fin.eof()) //while not end of file

{

fahr = celsiusToFahr(cels); //Function call. //Convert temperature to write to file.

cout << cels << " " << fahr << endl; // first echo to screen to check values

fout << "Celsius = "<<cels<< " Equivalent Fahrenheit=" <<fahr << endl;

fin >> cels; // get next value continue in while to eof()

}

fin.close();

fout.close();

return 0;

} // end of main()

/*---*/

/* This function performs a conversion from degrees Celsius to degrees Fahrenheit. */

/* Precondition: celsius holds a temperature in degrees Celsius */

/* Postcondition: returns degrees Fahrenheit */

double celsiusToFahr(double celsius) //Function header.

{

double temp; //Declare local variables (not known to main)

temp = (9.0 / 5.0)*celsius + 32.0; //Convert from celsius to Fahrenheit.

return temp; // sent the Fahrenheit value for the received Celsiius to main()

} // end of the function

HAND IN LABORATORY TASK: LAB #21
1. PRACTICE FIRST create data file below and run the previous
program (do not hand in..just practice). run the last program to
follow its logic. Consider the these Celsius temperatures for your
input file

2. NOW Create the opposite function ie. Read Fahrenheit
temperatures from the file and output Celsius. create an
appropriate data file from -10F to +300F (ABOUT 8 OR MORE
VALUES) and hand in the program, input and output and screen
output info in the lab (that is Hand in All!).Be sure to use 212F and
32 F to check your expected output is being calculated properly.
Ie 100C and 0C is expected if not your formula is bad!

-100

-32

-17.777

0

20

30

100

Function Definitions(for return a value and no value returned)
Syntax:
return-type function_name ([parameter_list]) {

// declarations and statements
return expression!

}

Void function_name ([parameter_list]) {
// declarations and statements

}

int factorial(int n)
{ int nfactorial = 1;

while (n>1) { nfactorial = nfactorial * n;
n--;

} //end while
return nfactorial;

}
void drawBlock(ostream& out, int size) {
for (int height = 0; height < size; height++) {

for (int width = 0; width < size; width++)
out << “*”;

out << endl;
}

}// NOTE: void with one parameter(‘size”)
// i.e. gets from main value of size

RETURNS SOME VALUE

No value returned does

Something useful-

Void function

Return example

NO VALUE RETURNED

BUT DOES SOMETHING

NOTE NO RETURN

STATEMENT! Void!

Void Functions
A void function declares void as a return type.

A return statement is optional.

If a return statement is used, it has the following form
◦ return;

◦ A void function performs a task, and then control returns back
to the caller--but, it does not return a value.

◦ Call has to stand alone and cannot be in an expression. For
example we use library functions in expressions (sin(), sqrt()
etc. but not void ones!

◦ NOTE Only two kinds of functions for C++: value-returning
functions and void functions. Both value-returning functions
and void functions receive values through their parameter
lists. A value-returning function can only return one value to
the call.

Examples void functions see you tube tutorial for excellent presentation:
https://www.youtube.com/watch?v=vXxoAzIkU7k and others follow!
void PrintIntersecting() { // example of void function no parameters filled from main!
cout << " $ " << endl;
cout << “ $ $ " << endl;
cout << " $ $ " << endl; }

void PrintGrade(string name, float score); // more than one parameter passed to it!
Example PrintGrade(“Irving", (90+87.5)/2); Or use as

name = “Irving"; overallScore = (90+87.5)/2;
PrintGrade(name, overallScore);
We use & to connect an address so the variable which will change in main.

And we can write void functions to do that also like

void UpdateBalance(float amount, float & balance) Or void UpdateBalance(float, float&);
// Purpose: Update the balance of a bank account by incorporating the current transaction
// Precondition: the value of the amount is assigned and sent to the void function

// Postcondition: the value of the balance is updated in main!
newvalue= oldvalue + bonus;
updateBalance(newvalue, balance) // call in main

UpdateBalance(float amount, float & balance) /header
{ balance = balance + amount; // value in “newvalue is passed to “amount”

return; // address of balance is passed and will change after action.
} // return is optional since we are not returning anything!

https://www.youtube.com/watch?v=vXxoAzIkU7k

Parameter Passing (2 types)
1. Pass by Value

2. Pass by reference (address)

:

Basic idea

When a function is called from main and we use parameters there are two ways main()

passes and receives information.’

1. Value Parameter: Main() uses variables we call arguments (I like this) or

reference parameters and calls the function with these variables and the function has

corresponding variables known as parameters(independent of main() ie. Main does not

know them) and the function uses the value passed to the parameters to calculate a

return value to main(). These receiveing parameters are called Value Parameters.

2. Reference Parameter: The parameters used by main() in the call to the function are

known to the function (they know the address in memory and thus the identity of them)

After the function does its thing the variables in main() will change!

We Focus on Parameter Passing (2
types) continued
1. Pass by Value
Value Parameters: expanded info.

Value Parameter: receives a copy of the content of corresponding arguments

in the main() call to the function. They have in the memory assigned to the

function(local memory for the function) their own copy of the values sent

(independent of the memory used by main()).

Thus, when the function executes these parameter it does the calculations

in their own memory space and returns a single value!

They can accept expressions, constants, or variables from the function

call parameters.

Here Even Void Functions can use Value or reference Parameters
Example Prototype void Name(dataType variable, dataType variable)

no value is returned but the void function will use the values to manipulate

or calculate something. As we saw in the examples.

Parameter Passing (2 types) continued

2. Pass by reference (address)
More on arguments or reference Parameters:

Parameters(s) in the function receive the memory address for the

corresponding arguments in the main() call to the function and thus the function

Via the parameters know the identity of the arguments when the function

executes, since it receives the addresss where info is stored it can change

those values at the address known to main(), thus this functioin call is

sharing the same memory space with Main()

This way more than one value can change and be passed back to main()

Best used when you want the function call to change a value of a variable(s)

in main() and also useful when you want more than one value changed since

So you can get more than One if you pass multiple addresses :

Possibly a time saver in some cases

Only variables can be arguments in the call, not constants or expressions.

NOTE: Sometimes the arguments in the function call are named reference

parameters and the name “parameters” is used for the function itself and

may be also called the local variables of the function.

REVIEW Function Terminology
Function Prototype

◦ describes how a function is called : in the beginning of program
E.G. double celsiusToFahr(double celsius); //Programmer defined function. Function prototype

double bigbang(x,y,z)
Function Call

◦ references and invokes (i.e. causes execution of) a function
◦ cout <<bigbang(sqrt(f),q,u/9); sqrt(f),q,u/9 are the arguments
◦ fahr = celsiusToFahr(cels); cels is an argument

Function Arguments
◦ Expressions provided as parameters to function call

Function Definition The actual functions at the end or sometimes in the Beginning of a program.
◦ function header
◦ statement block

E.g. int factorial(int n) // <-function header with formal parameter
“n”
{ int nfactorial = 1; // nfactorial is internal parameter

while (n>1) {
nfactorial = nfactorial * n; BLOCK

n--;
} //end while block
return nfactorial;

}

Formal Parameters
◦ Variables defined in the function header and used in definition to access the

function’s parameters
Formal parameters in the function must agree with arguments in order, number and data type.
Arguments are the variables etc in the call.

int fact(int); *prototype to let the main()
program know the name of the function and its return
and needed argument/parameter types*/
int main()
{
int n, factorial; //1 <- sequence of execution
cin >> n; //2
if(n>=0)
{
factorial = fact(n); //3
cout << n <<"! is “ << factorial << endl;//7

} //end if
return 0;
} //end main

int fact(int num) //4 & Function Definition
int nfact = 1; //5
{ while(num>1)

{
nfact = nfact*num;
num--;

} // end while
return(nfact); //6

} //end fact

Example: pass by value call we have seen.

file://prototype

Memory

Snapshot:
main()

1-> int n

3 ->

4-> int num

6->

5-> int

nfact

?

32 ->

3 1

int factorial ?

7 -> 3 6

fact()

1 6

?

call fact()
re

tu
rn

n
fa

c
t

Note: value of n in

main has not

changed.

int fact(int);
int main()
{
int n, factorial; //1
cin >> n; //2
if(n>=0)
{
factorial = fact(n); //3
cout << n <<"! is "
<< factorial << endl;//7

} //end if
return 0;
} //end main

//Function Definition
int fact(int num) //4
{

int nfact = 1; //5
while(num>1)
{

nfact = nfact*num;
num--;

}
return(nfact); //6

} //end fact

/* Program chapter6_3 pass by value another example */

/* This program prints 21 values of sinc(x) in the interval [a,b] */

#include<iostream> //Required for cin, cout

#include<cmath> //Required for sin().

using namespace std;

double sinc(double x); //Function Prototype

int main()

{ double a, b, x_incr, new_x; // Declare objects in main()

cout << "Enter endpoints a and b (a<b): \n";

cin >> a >> b;

x_incr = (b- a)/20; // increment between the points

cout.setf(ios::fixed); cout.precision(6); // Set Formats

cout << "x and sinc(x) \n"; // table of sinc(x) values call to sinc()

for (int k=0; k<=20; k++)

{ new_x = a + k*x_incr;

cout << new_x << " " << sinc(new_x) << endl; // call to sinc() here!

}

return 0; // Exit program.

} // end main

double sinc(double x) /*This function evaluates the sinc function*/

{ if (fabs(x) < 0.0001) // x here picks up the values of x in main()

{ return 1.0; // but this x has its own memory and does not

} // interfere with the values of x in main()

else

{ return sin(x)/x;

}

} // end of function

/* Program chapter6_3.cpp pass by value another example */

/* This program prints 21 values of sinc(x) in the interval [a,b]

*/

#include<iostream> //Required for cin, cout

#include<cmath> //Required for sin().

using namespace std;

double sinc(double x); //Function Prototype

int main()

{ double a, b, x_incr, new_x; // Declare objects in main()

cout << "Enter endpoints a and b (a<b): \n";

cin >> a >> b;

x_incr = (b- a)/20; // increment between the points

cout.setf(ios::fixed); cout.precision(6); // Set Formats

cout << "x and sinc(x) \n"; // table of sinc(x) values call to

sinc()

for (int k=0; k<=20; k++)

{ new_x = a + k*x_incr;

cout << new_x << " " << sinc(new_x) << endl; // call to

sinc() here!

}

return 0; // Exit program.

} // end main

/*This function evaluates the sinc function= sin(x)/x */

double sinc(double x)

{ // function block

// x here(parameter) picks up the

// values of new_x (argument) in main()

// but this “x” has its own memory and does not

// interfere with the values of new_x in main()

// this x is local to the function

if (fabs(x) < 0.0001

{

return 1.0;

}

else

{

return sin(x)/x;

}

} // end of function

So you would like a graph of the output?. Since you have two columns

of numbers, just making a copy of the output in the usually way is almost

impossible to transfer to an excel spreadsheet where making graphs is easy

so long as you, As in this case, copy two columns of numbers.

SIMPLE solution is to output one of the variables at a time to create single

Columns which are easy to transfer to the excel spreadsheet and create

A graph.. The professor will demonstrate such with this last program

Once a graph and the columns of data are produced a paper copy can be made

And attached to the hand-in when asked for. Looking like the following.
-10to 10

x sinc(x)
-10 -0.0544

-9 0.045791
-8 0.12367

-7 0.093855

-6 -0.04657
-5 -0.19179
-4 -0.1892
-3 0.04704

-2 0.454649

-1 0.841471
0 1

1 0.841471

2 0.454649
3 0.04704
4 -0.1892
5 -0.19179
6 -0.04657

7 0.093855
8 0.12367

9 0.045791
10 -0.0544

Be sure to look at the various graphs of this

sinc() function in the text for various ranges.

HAND IN LABORATORY TASK: LAB #22 create ROBBINS(x)

1.RUN THE PREVIOUS PROGRAM FROM -20 TO +20 AND

PRACTICE DOING A GRAPH OF THE OUTPUT

DO NOT HAND IN!

2. Part A. MODIFY THE PREVIOUS PROGRAM TO CALCULATE A NEW

FUNCTION with more values in the same range as above.

ROBBINS(X)=(10*sin(x) / x) + cos(x).

OUTPUT X (SAME RANGE AS ABOVE but 100 values or more) AND THE

Corresponding ROBBINS() VALUES.

COPY AS USUAL TO THE final PROGRAM TO HAND IN.

Part B.

Use the graph technique discussed and output only the value of the function

ROBBINS(X) (ie the y axis values)and transfer The data to an Excel

spreadsheet and plot the data and attach to the data sheet.

Print up the this sheet of data and graph and hand in with a copy of the

modified Program and its output data (PART 2A).

Extra credit have the correct values on the x axis!

***Class exercise:

Consider the following function

int positive(double a, double b, double c)

{

int count; // parameters

count =0:

if (a>0)

{

++count;

}

if (b>0)

{

++count;

}

if (c>0)

{

++count;

}

return count;

}

main() has the call

x= 25; //arguments

total = positive(x, sqrt(x), x-30)

total =?

Show memory of parameters

And arguments?

Pass by Reference: Details
Pass by reference allows modification of a function
argument.

Must append an & to the parameter data type in both
the function prototype and function header
void getDate(int& day, int& mo, int& year)

Formal parameter(in the function) becomes an alias for
the argument.
◦ The argument must be a variable of a compatible type.

So Any changes to the formal parameter(variable) in the
function directly change the value of the
argument(variable) in the main program.

In other words, the address of the variables in main are
passed so the function is working directly with the same
variables in main and memory will change for those.

Example: call by reference
#include <iostream>

using namespace std;

void swap(double&, double&); //function prototype

int main()

{

double x=5, y=10;

swap(x,y); //function call; x y are arguments

cout >> “x = “ << x << ‘,’ << “ y= “ << y << endl;

return 0;
} //end main

//Function swap interchanges the values of two variables
void swap(double& x, double& y)

{
double temp; //local variable temp
temp = x; //x & y effectively are the same as main
x=y;
y=temp;
return; //optional return statement

} //end swap

WHAT IS x and y after the call?

//Function Definition

void swap(double& x, double& y)

{
double temp;//
temp = x;
x=y;
y=temp;
return; //optional

}//end swap

Program Trace: pass by reference
#include <iostream>
using namespace std;

void swap(double&, double&); //prototype
int main()
{

double x=5, y=10;
swap(x,y); //x y are arguments
cout << "x = " << x << ','

<< " y= " << y << endl;
return 0;

} //end main

Memory

Snapshot:
main()

double x

double x double y

5

double y 10

swap()
?double

temp
5

call

swap()

//Function Definition

void swap(double& x, double& y)

{
double temp;//
temp = x;
x=y;
y=temp;
return; //optional

}//end swap

Program Trace: pass by reference
#include <iostream>
using namespace std;

void swap(double&, double&); //prototype
int main()
{

double x=5, y=10;
swap(x,y); //x y are arguments
cout << "x = " << x << ','

<< " y= " << y << endl;
return 0;

} //end main

Memory

Snapshot:
main()

double x

double x double y

10

double y 10

swap()
?double

temp
5

//Function Definition

void swap(double& x, double& y)

{
double temp;//
temp = x;
x=y;
y=temp;
return; //optional

}//end swap

Program Trace: pass by reference
#include <iostream>
using namespace std;

void swap(double&, double&); //prototype
int main()
{

double x=5, y=10;
swap(x,y); //x y are arguments
cout << "x = " << x << ','

<< " y= " << y << endl;
return 0;

} //end main

Memory

Snapshot:
main()

double x

double x double y

10

double y 5

swap()
?double

temp
5

return;

Note: variable temp is only know to the function, we say its local!

While the memory place of x and y is known in main() and swap()

//Function Definition

void swap(double& x, double& y)

{
double temp;//
temp = x;
x=y;
y=temp;
return; //optional

}//end swap

Program Trace: pass by reference
#include <iostream>
using namespace std;

void swap(double&, double&); //prototype
int main()
{

double x=5, y=10;
swap(x,y); //x y are arguments
cout << "x = " << x << ','

<< " y= " << y << endl;
return 0;

} //end main

Memory

Snapshot:
main()

double x 10

double y 5

Arguments have been

modified

SEE SIMILAR PROGRAM

AND ANALYSIS IN TEXT!

CLASS EXERCISE. CONSIDER swapint() .
IF THE CALL WAS from main() that had each of
the following explain what do you think happens?

1. int x=1, y =4;….swapint(x,y)
2. swapint(10,4)
3. swapint(x,y+5)
4. double x =1.5, y=3.2;…..swapint (x,y)
5. What is the output of the following program

#include <iostream>
Using namespace std;
Void funincpp(int first, int& second);

int main()
{

int n1(0), n2(0);
funincpp(n1,n2);
cout<<n1<<endl<<n2<<endl;
return 0;

}

void swapint(int& x, int& y)
{

double temp;//
temp = x;
x=y;
y=temp;
return; //optional

}//end swap

Void funincpp(int first, int& second)

{

first++;

second += 2;

return;

}

Scope and Storage Class
Scope refers to the portion of the program in which it is valid to reference a
function or a variable. It is the part of the program that an object is visible or
accessible. We can thus for example put a function before main() which effects
when objects are accessible.

In particular, we define:

Local scope - a local variable is defined within a function or a block and can be
accessed only within the function or block that defines it. This “local” nature has
been mentioned in our previous examples.

Global scope (also called file scope) - a global variable is defined outside the
main function and can be accessed by any function within the program file.

Example are the “constants” you have place before main(), they will be known to
all functions!

Storage Class – 4 Types
scope is related to the storage class which is basically the lifetime of a
variable

automatic - key word auto - default for local variables
◦ Memory set aside for local variables is not reserved when the block in

which the local variable was defined is exited. I.e. Local variables
◦ They are gone to the rest of the program after the function finishes.

external - key word extern - default for global variables
◦ Memory is reserved for a global variable throughout the execution life

of the program. i.e. global variables (all functions can access)

static - key word static
◦ Requests that memory for a local variable be reserved throughout the

execution life of the program. The value stays after functions finish.

register - key word register
◦ Requests that a variable should be placed in a high speed memory

register rather than regular memory. Not always possible even when
asked.

Illustrating scope and storage class-> #include <iostream>

using namespace std;

…

int count; // note outside main()

int main()

{ int x, y ;

….. All functions are called

}

Int calc(int a, int b)

{ int x;

count +=x; …

}

void checkit (int sum)

{ count += sum;

}

void mystatic()

{ int x(0);

static int csi(0);

x++;

csi++;

cout << x <<‘,’ << csi;

return;

}

Class?

Global object?

Local objects?

Note use of “x”? and “count”

Any Static?

H.W #14
Exam Practice chap 6 #1-4,8-14 39 PTS 3 EACH TOTAL PTS= 63 TO 75
EXTRA CREDIT 15-17 (SEE “CLASS” DEFINITION IN CHAP 2 AND 3 AND SEC 6.7)
12PTS 4 EACH be sure to show memory snapshots for 15 to 17

What is the output?: MEMORY: Use tables for all variable values & Specify variable (scopes) types!!
#include <iostream > for 30 pts (BE SURE TO USE TABLE AND OUTPUT COLUMNS)
using namespace std;
int X(6), C(3);
int TestMe(int &Y, int Z);
int main (void)
{ int A, B, W;

A = 5; B = 2;
X = 1;
W = TestMe(A, B); // Last two output lines
cout << "A = " << A << " B = " << B << endl;
cout << "X= " << X<< " C = " << C << endl;

return 0;
}
int TestMe (int &Y, int Z)
{ int C;

cout << " Y = " << Y <<" Z = " << Z << endl;
cout << "C = " << C << endl;
cout << " X = " << X << endl;
C = 4; Z = 7;
X = C + Z;
Y = X + Z;

cout << " X = " << X <<" Z = " << Z << endl;
cout << " Y = " << Y << endl;
return Z;

Component distance

X weight = moment

Sum of moments

Text Units inch-lbs

cg = Swdi / W

Text problem the reference line is in the nose!

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

Problem Solving Applied: Calculating the
Center of Gravity

Here we know the moments of the empty weight and fuel tank

We need the total weight, W, and moments of cargo and crew.

To solve cg = Swdi / W and note cg will be in inches.

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

Problem Solving Applied:
Calculating the Center of
Gravity

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

Problem Solving Applied:
Calculating the Center of
Gravity

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

Problem Solving Applied:
Calculating the Center of Gravity

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

Problem Solving Applied:
Calculating the Center of Gravity

NOTE: Distances (moment arms0 are all given values and

Can be constants in our program for this example

Several approaches to this problem but

THE TEXT VERSION OF THE PROGRAM IS PRESENTED NEXT WHICH YOU

CAN USE FOR LAB#23 6.4. CPP

EXTRA CREDIT ASSIGNMENT: PREPARATION FOR EXTRA CREDIT LAB #23

/chapter 6_4.cpp *center of gravity and total weight*/

#include<iostream> //Required for cin, cout

using namespace std;

const double PERSON_WT(160.0); //Average weight/person

const double FUEL_MOMENT(1169167.3); //Fuel tank moment

const double EMPTY_WT(9021.0); //Standard empty weight

const double EMPTY_MOMENT(2751405.0); //empty moment

const double FUEL_WT(3618.0); //Full fuel weight

const double CARGO_DIST(345.0);// weight

const double CREW_DIST(120.0); //weight

double CargoMoment(double); //function prototypes here

double CrewMoment(int);

void GetData(int&, double&);

int main()

{ int crew; //number of crew on board (1 or 2)

double cargo; //weight of baggage, pounds

double total_weight, center_of_gravity;

cout.setf(ios::fixed); //Set format flags.

cout.setf(ios::showpoint);

cout.precision(1);

GetData(crew, cargo); // call function

total_weight = EMPTY_WT + crew*PERSON_WT + cargo+ FUEL_WT;

center_of_gravity = (CargoMoment(cargo) + CrewMoment(crew)+ FUEL_MOMENT + EMPTY_MOMENT)/total_weight;

cout << endl << "The total weight is " << total_weight<< " pounds. \n"

<< "The center of gravity is " << center_of_gravity<< " inches from the nose of the plane.\n";

return(0);

}//end maindouble CargoMoment(double weight)

{return(CARGO_DIST*weight);

}//end CargoMoment--------------------------*/

double CrewMoment(int crew)

{return(CREW_DIST*crew*PERSON_WT);

}//end CrewMomentvoid GetData(int& crew, double& cargo)

{cout << "enter number of crew members (Maximum of 2) ";

cin >> crew;

while(crew <= 0 || crew > 2)

{

cout << endl << crew << " is an invalid entry\n"<< " re-enter number of crew, 0 < crew <= 2 ";

cin >> crew;

}//end while

cout << crew << " crew members, thank you.\n\n";

cout << "enter weight of cargo (Maximum of 5000 lbs) ";

cin >> cargo;

while(cargo < 0 || cargo > 5000)

{cout << endl << cargo<< " is an invalid entry“ << " re-enter cargo weight, 0 < cargo <= 5000\n ";

cin >> cargo;

}//end while

cout << cargo << " pounds of cargo loaded. Thank you.\n\n";

return;

}//end getdata

/*center of gravity and total weight*/

#include<iostream> //Required for cin, cout

using namespace std;

const double PERSON_WT(160.0); //Average weight/person

const double FUEL_MOMENT(1169167.3); //Fuel tank moment

const double EMPTY_WT(9021.0); //Standard empty weight

const double EMPTY_MOMENT(2751405.0); //empty moment

const double FUEL_WT(3618.0); //Full fuel weight

const double CARGO_DIST(345.0);// weight

const double CREW_DIST(120.0); //weight

double CargoMoment(double); //function prototypes here

double CrewMoment(int);

void GetData(int&, double&);

int main()

{ int crew; //number of crew on board (1 or 2)

double cargo; //weight of baggage, pounds

double total_weight, center_of_gravity;

cout.setf(ios::fixed); //Set format flags.

cout.setf(ios::showpoint);

cout.precision(1);

GetData(crew, cargo); // call functions start here

total_weight = EMPTY_WT + crew*PERSON_WT + cargo+ FUEL_WT;

center_of_gravity = (CargoMoment(cargo) + CrewMoment(crew)+

FUEL_MOMENT + EMPTY_MOMENT)/total_weight;

cout << endl << "The total weight is " << total_weight<< " pounds. \n"

<< "The center of gravity is " << center_of_gravity<< " inches from the

nose of the plane.\n";

return(0); }//end main

double CargoMoment(double weight)

{return(CARGO_DIST*weight);

}//end CargoMoment

/*--*/

double CrewMoment(int crew)

{ return(CREW_DIST*crew*PERSON_WT);

}//end CrewMoment

/*--*/

void GetData(int& crew, double& cargo)

{ cout << "enter number of crew members (Maximum of 2) ";

cin >> crew;

while(crew <= 0 || crew > 2)

{ cout << endl << crew << " is an invalid entry\n"

<< " re-enter number of crew, 0 < crew <= 2 ";

cin >> crew;

}//end while

cout << crew << " crew members, thank you.\n\n";

cout << "enter weight of cargo (Maximum of 5000 lbs) ";

cin >> cargo;

while(cargo < 0 || cargo > 5000)

{ cout << endl << cargo<< " is an invalid entry"

<< " re-enter cargo weight, 0 < cargo <= 5000\n ";

cin >> cargo;

}//end while

cout << cargo << " pounds of cargo loaded. Thank you.\n\n";

return;

}//end getdata

HAND IN LABORATORY TASK: LAB #23 EXTRA CREDIT 50 POINTS

Run the calculating the center of gravity program: Study it carefully!

1.Check the text for their hand example. try it yourself and then run your

program to be sure it reproduces the hand example. Ie. All outputs in the

“TESTING” part of the problem. DO NOT HAND IN THE LATTER!

2. Modify the program by adding a second cargo bay that is 522 inches from the

nose of the aircraft and has a maximum cargo weight of 1000 pounds.

Run it and attach the output of the total weight and center of gravity once you do

As well as copy the screen for input values similar to the “TESTING” section.

3. Do the hand calculation for part 2 and hand that in with

the Lab. Did you get about the same answer as the program gave you in 2?

Yes! then no problem,

No! go back and redesign the code.. Run till you get a reasonable match.

HINT: YOU HAVE TO TAKE INTO ACCOUNT TWO CARGO BAYS NOT ONE

AND ADD THE APPRORIATE CODE (IE FUNCTION OR FUNCTIONS)

Numerical Technique:
Roots of functions.
1. incremental search find where
the function (say y=f(x)) changes
sign for values of x by considering
an interval suspected of the sign
change. If it does then increment x
values to get closer to the root and
converge on the root (done detail in
text but covered litely here)

Increment search is done on the
Roots of Polynomials in text
A polynomial is generally expressed
in the form:

Find values of x such that f(x) = 0

Degree of the polynomial is N

N roots (may be real or complex)

Easy to find roots if polynomial is factored into linear terms.

E.g 0= x2 - 5x - 14 =(x-7)(x+2) so x-7 =0 or x=7 one root x+2=0 or x=-2 the other
root

Search for roots in polynomial over an
interval by breaking the interval into smaller subintervals such that function is
negative on one end and positive on the other end.

◦ Thus there is at least 1 real root

◦ This is always an odd number of real roots

◦ Keep decreasing the interval size to ‘narrow in’ on one root.

Newton-Raphson Method
Very Popular root-finding method using a function and its first
derivative. Iteratively estimates a root from the function and its
derivative. Usually requires fewer iterations than an incremental
search. Note: We make an initial (intelligent) guess x1 ->In figure
below f(x1) is >0 and a slope (derivative) is projected from f(x1) to
get x2 and find f(x2) is <0 which tells us the f(x) has crossed x or
has a 0 value between x1 and x2 at xr here. From f(x2) we
projected another slope and see we get x3 which is closer to the
root xr. By repeating this process we converge on the real root on
the x-axis.

Using Newton-Raphson Method: For polynomials up to 3rd

order

Given y=p(x)=a0x3 +a1x2 +a2 x +a3 We set up a program to
handle the general 3rd order case but will solve y=p(x)=x2

+4x+3 and the derivative y’ =2x+4 (ie slope! for next value)

We will keep getting closer to the root solution by repeating
the process of repeated steps known as iteration. Namely,
keep using the derivative to get a new value of x and
evaluate the function at that point check if it is 0 for us, if not
use the derivative from that new point to get a another point
(This is iteration)

And set a point our program to exit with our solution when
the function evaluated is close enough to 0 within a value
we set, known as the tolerance. Similar to what we did
before with conditions like (x<0.001).

The key to get the next point x2 is to note the straight line from x1,f(x1) to x2,0 and thus we can
use the straight line formula between these two points as follows. Starting from scratch you
know the formula with y=mx+b so we have for the straight line generated by the slope, m at
point x2 y=0
So at x2 the line is 0 = mx2 +b and at point x1 the same line is f(x1) =mx1+b
Subtract the first from the second we get f(x1) -0 =mx1-mx2

or f(x1)/m = x1-x2 but we need x2 Solving for x2 gives x2= +x1 - f(x1)/m
and we know the slope m=f’(x1) so

x2=x1-f(x1)/f’(x1) is our iteration formula

so we need the first point then the function and its derivative evaluated at that point to predict
the next point which we will see done in the program that follows which uses for f(x) a
polynomial indicated by p(x). Keep in mind the general f(x) form just shown for problem solving.

/* Program chapter6_11 */

/* This program finds the real roots of a cubic polynomial */

/* p(x) using the Newton-Raphson method. */

/* this slide and next have commentary by the Prof! */

#include<iostream> //Required for cin, cout

#include<cmath> //Required for pow()

using namespace std;

int main()

{

// Declare objects.

int iterations(0);

/*integrations is the count for how many times we repeat the

process of getting close to the root*/

double a0, a1, a2, a3, x, p, dp, tol; // dp is the derivative

// Get user input.

cout << "Enter coefficients a0, a1, a2, a3\n";

cin >> a0 >> a1 >> a2 >> a3;

cout << "Enter initial guess for root\n";

//hopefully intelligent especially if we graph the function

cin >> x;

// Evaluate p at initial guess. ie p=p(x1)=f(x1) from before

p = a0*pow(x,3) + a1*x*x + a2*x + a3; value of the function

// Determine tolerance by the value of the function at x.

tol = fabs(p); //ie test tol aganst 0! Is it near 0 enough?

/* we set up our loop to repeat our iterations with 2 conditions*/

/*if we are not near zero or less than 100 loops have been done*/

/*keep going till we reach our “0” or stop after 100 loops*/

while(tol > 0.001 && iterations < 100)

{

// Calculate the derivative. Here 3rd order poly is a 2nd order one

dp = 3*a0*x*x + 2*a1*x + a2; // this is our m=f’(x)=dp

// Calculate next estimated root, x2, from x2=x1+f(x1)/f’(x1)

// here x on the left is x2 and x on the right is x1
// and p=f(x1) and dp =f’(x1)

x = x - p/dp;

// Evaluate p at estimated root.

p = a0*x*x*x + a1*x*x + a2*x + a3;

tol = fabs(p);

iterations++;

}

if(tol < 0.001) // wow we are out of the root and got one

{

cout << "Root is " << x << endl

<< iterations << " iterations\n";

}

else // no luck!

cout << "Did not converge after 100 iterations\n";

return 0;

}

/*--*/

/* Program chapter6_11 */

/* */

/* This program finds the real roots of a cubic polynomial */

/* using the Newton-Raphson method. */

#include<iostream> //Required for cin, cout

#include<cmath> //Required for pow()

using namespace std;

int main()

{

// Declare objects.

int iterations(0);

double a0, a1, a2, a3, x, p, dp, tol;

// Get user input.

cout << "Enter coefficients a0, a1, a2, a3\n";

cin >> a0 >> a1 >> a2 >> a3;

cout << "Enter initial guess for root\n";

cin >> x;

// Evaluate p at initial guess.

p = a0*pow(x,3) + a1*x*x + a2*x + a3;

// Determine tolerance.

tol = fabs(p);

while(tol > 0.001 && iterations < 100)

{

// Calculate the derivative.

dp = 3*a0*x*x + 2*a1*x + a2;

// Calculate next estimated root.

x = x - p/dp;

// Evaluate p at estimated root.

p = a0*x*x*x + a1*x*x + a2*x + a3;

tol = fabs(p);

iterations++;

}

if(tol < 0.001)

{

cout << "Root is " << x << endl

<< iterations << " iterations\n";

}

else

cout << "Did not converge after 100 iterations\n";

return 0;

}

LAB 24: 1. Do no hand in this part. Run the previous program for the text examples

Of the coefficients a1,a2,a3.a4 as 0 1 4 3 and guess for root at x= 5 and a second time

Guess at x= -4 did you get the root solutions -0.999799 and -3.0003 then proceed.

2. Using the curve above where some of the roots are obvious run the program for

This cubic equation and use close guesses(not exact values and think of a slope

projection to the x axis) to the roots to see if you can get all three real roots.

Show the run and output for all three. Have fun.

HAND CHECK YOUR ANSWERS! SHOW y =0 for all three roots (on lab hand in).

HAND IN LABORATORY TASK: LAB #24

Numerical Integration (area of a Trapezoid)
Integration of a function over an interval computes the area under the graph of the
function.

◦ Important relationships in engineering (e.g. distance, velocity, acceleration, work, electric
fields etc).

Computable through several techniques. We use here only the Trapezoidal Rule.

An approximate techniques for area calculations under a curve. See figure on left

Essentially over an interval eg. xi to xi+1 we
calculate the area of a rectangle plus triangle

Which forms the trapezoid (dark area on left).

h2-h1 Area =base*h1 +1/2 *base*(h2-h1)

Area = ½*base*(h1+h2) = trapezoid area

h1 h2

◦ base

Trapezoidal Rule continued

/* Program chapter6_12 *

/* This program estimates the area under a given curve */

/* using trapezoids with equal bases. */

#include<iostream> //Required for cin, cout

#include<cmath> //Required for exp() function we will integrate

using namespace std;

// The two Function prototypes we will use.

double integrate(double a, double b, int n);

double f(double x);//the function f(x) is computed for values of x

int main()

{

int num_trapezoids; // Declare objects (variables of main)

double a, b, area;

cout << "Enter the interval endpoints, a and b\n"; //user input

cin >> a >> b;

cout << "Enter the number of trapezoids\n";

cin >> num_trapezoids;

// Estimate area under the curve of 4e^-x

area = integrate(a, b, num_trapezoids); //call integrate

// Print result since integrate called the exp().

cout << "Using " << num_trapezoids

<< " trapezoids, the estimated area is "

<< area << endl;

return 0;

}

/*---

/*--*/

double integrate(double a, double b, int n)

{

// Declare objects local variables for this function

double sum(0), x, base, area;

base = (b-a)/n;

for(int k=2; k<=n; k++) // start building trapezoid formula

{

x = a + base*(k-1);

sum = sum + f(x); // function called here for values of x

}

area = 0.5*base*(f(a) + 2*sum + f(b)); // f(a) and f(b) called

return area; // final area is returned

}

double f(double x) // this function is called in the above

{

return(4*exp(-x)); // here you can change the function!

}

/*---

--*/

/*---*/

/* Program chapter6_12 */

/* */

/* This program estimates the area under a given curve */

/* using trapezoids with equal bases. */

#include<iostream> //Required for cin, cout

#include<cmath> //Required for exp()

using namespace std;

// Function prototypes.

double integrate(double a, double b, int n);

double f(double x);

int main()

{

// Declare objects

int num_trapezoids;

double a, b, area;

// Get input from user.

cout << "Enter the interval endpoints, a and b\n";

cin >> a >> b;

cout << "Enter the number of trapezoids\n";

cin >> num_trapezoids;

// Estimate area under the curve of 4e^-x

area = integrate(a, b, num_trapezoids);

// Print result.

cout << "Using " << num_trapezoids

<< " trapezoids, the estimated area is "

<< area << endl;

return 0;

}

/*---*/

/*---*/

double integrate(double a, double b, int n)

{

// Declare objects.

double sum(0), x, base, area;

base = (b-a)/n;

for(int k=2; k<=n; k++)

{

x = a + base*(k-1);

sum = sum + f(x);

}

area = 0.5*base*(f(a) + 2*sum + f(b));

return area;

}

double f(double x)

{

return(4*exp(-x));

}

/*---*/

HAND IN LABORATORY TASK: LAB #25

1. Run the previous integration program for f(x)= 4e(-x) from 0 to 1 for
trapezoidal numbers n=5, 50, 100 and 10,000 comment on accuracy?.
Since the actual value of the integral is known to be 2.528482 (note 6
decimal digits) which you should check by hand calculation. Compare
your four answers with the known value above (show %differences)
USE 6 SIGNIFICANT DIGITS (TRY SCIENCTIFIC IF YOU HAVE PROBLEMS
GETTING 6 DECIMAL DIGITS). EXTRA CREDIT: RUN PART 1 FOR
CONSTANTLY INCREASING to extremely high numbers and comment
on accuracy. Be sure to get the best value of the definite integral for
comparison.

2. Find the area under the curve of the f(x)=3*sin(2x) from 0 to 1.5
radians. Run the program for various trapezoidal numbers as in part 1.
Do a hand calculation of the integral (show this in the report) and
compare your results which was the best RESULT for trapezoidal
numbers?(state this and show % differences!)

NOTE: two hand calculations in this assignment!

