
TWO DIMENSIONAL ARRAY OR MATRIX common name scores

Defined as scores[10][5] IE 10 rows x 5 columns

showing name of each position; some values below

Values in the memory could be scores[1][2]=78 scores[0][2]=56 scores[7][0] = 91

Etc.

HOW MANY MEMBERS IN THIS 2D ARRAY???

Outline
Objectives READ STDY FOLLOWING SECTIONS ONLY

1. Two Dimensional Arrays

4. Matrices as 2D arrays (The mathematics of Matrices)

5. Numerical technique: Solution to Simultaneous
Equations

6. Problem Solving Applied: Electrical-Circuit Analysis

(Kirchoffs rules for two voltage sources an application

Of a solution to simultaneous equations)

Be sure to run youtube video(s) in the online syllabus

Objectives
Develop problem solutions in C++

containing:

• Matrix computations

• Input from Data Files

• Functions to Compute Sums and Averages

• Techniques for solving a system of simultaneous equations

Two Dimensional Arrays

• Declaration and Initialization

• Computation and Output

• Function Arguments

Two Dimensional Arrays

• A two dimensional array stores data as a
logical collection of rows and columns.

• Each element of a two-dimensional array has a
row position and a column position.

• To access an element in a two-dimensional array,
you must specify the name of the array followed
by:

• a row offset

• a column offset

Declaration and Initialization

• The declaration of a two-dimensional array requires
a row size and a column size.

• A consecutive block of (row size)*(column size)
memory locations are allocated.

• All array elements must be of the same type.

• Elements accessed by two offsets – a row offset and
a column offset.

• The name of the array holds the address of the first
byte of memory

Example

//Declaration
int data[2][3]; 2 X 3 = 6 VALUES

Memory Snapshot 6 VALUES ARE

SEQUENCIAL IN MEMORY

?

?

?

?

?

?

data

Example

//Declaration VALUES IN MATRIX
FORM IS THE PROGRAMMERS CONCERNS
int data[2][3];

? ? ?

? 98 ?
row 0

row 1

col 0 col 1 col 2

row/column form:

THESE ROW AND COLUMN NUMBERS ARE KNOWN

AS THE OFFSETS AND ARE USED TO GET THE VALUE

IN MEMORY OF THE ARRAY at their position.

FOR EXAMPLE data[1][1]=98 as illustrated

2D Array Definition Syntax

Syntax:
data_type identifier[[row_size]][column_size] [= initialization_list];
//row_size and column_size must be integer constants

Examples
int data[2][5]; //allocates consecutive memory for 10 integer values
double t[2][2] = {{3.0,5.0},{2.1,7.2}};
//allocates and initializes 4 VALUES T[0][0]=3.0 T[1][1]=7.2 ETC

Valid References
cout << data[1][3];
cout << t[1][0];

Invalid References
cout << data[2][5]; //invalid offset NO
ROW 2 OR COLUMN 5 0 TO 1 FOR ROWS AND O TO
4 ARE THE OFFSETS ONLY.

cout << t[-1][-1]; //invalid offset
NO SUCH THING AS NEGATIVE OFFSETS

Initialization Examples

int temp[4][3] = {50, 70, 60, 48, 75,
62, 51, 69, 60, 52, 78, 63};

int temp[4][3] = {{50, 70, 60}, {48, 75, 62},
{51, 69, 60}, {52, 78, 63}};

// last is the same as above

Only the row size can be left blank and the
System will use the appropriate number= 4 here!
int temp[][3] = {{50, 70, 60}, {48, 75, 62},

{51, 69, 60}, {52, 78, 63}};
int temp[][3] = {50, 70, 60, 48, 75, 62, 51,
69, 60, 52, 78, 63};

NOTE: ONLY ROW SIZE DIMENSION CAN BE EMPTY
USING AN EMPTY COLUMN SIZE GETS A
COMPILATION ERROR

Initialization Examples

• int t2[7][4] = {{50, 70, 60}, {48, 75, 62},
{51, 69, 60}, {52, 78, 63}};

• IF the Number of Values assigned are shorter
than the size of the Array all other values are assigned 0!

•

• Values of 2D array t2 are thus =

50 70 60 0

48 75 62 0

51 69 60 0

52 78 63 0

0 0 0 0

0 0 0 0

0 0 0 0

Example: Input Using cin

• Nested for loops are often used when
inputting and assigning values to a two-dimensional
array.
• Nested loops are generally useful for getting around the 2D

arrays…

//Declaration
double table[RSIZE][CSIZE];

for (int i=0; i<RSIZE; ++i) //every row
for (int j=0; j<CSIZE; ++j)//every col
cin >> table[i][j];

Example: Assignment of values
using nested “for” loops for 2D!

//Declaration
const int RSIZE(3),CSIZE(2);
double v[RSIZE][CSIZE];

for (int i=0; i<RSIZE; ++i) //every row
for (int j=0; j<CSIZE; ++j)//every col
v[i][j] = i+j;

0 1

1 2

2 3

V

Example: Computations

• Compute the average value of an array
with n rows and m columns.

double sum(0), average;
for (int i=0; i<n; ++i)//every row
for (int j=0; j<m; ++j)//every col
sum += array[i][j];

average = sum / (n*m);

Example: Computations

• Compute the average value of the nth row
of a 2D array with r rows and c columns.

double sum(0), rowAverage;
for (int j=0; j<c; ++j) //every col

sum += array[n][j];
average = sum / c;

Modify!

• How would you Modify the C++ statements on the previous slide to
compute the average of the mth column.

Outputting 2D Arrays

• Two dimensional arrays are often printed in a row by row format,
using nested for statements.

• When printing the row values of an array, be sure to print:

• whitespace between the values in a row.

• a newline character at the end of each row.

Example: output of the array
values row by row

for (int i=0; i<n; ++i) {//every row
for (int j=0; j<m; ++j)//every col
cout << array[i][j] << ‘ ‘;

cout << endl; //add end-of-line each row
}

Class exercise 2D array with for loops!
VERY IMPORTANT FOR ARRAY (MATRICES)

HOW MANY TIMES DOES EACH LOOP EXECUTE & output =?

for (int k=0; k<3; ++k)

{ for (int j=0; j<2; ++j)

{

++ count

cout <<k<<“ “<<j<<count<<endl;

}

}

Double sum2(0);

int ving[2] [3] = {2, -8, 9, 3, 6, 4}; // PLAY COMPUTER NOW! k, j, ving sum2

for (int k = 0; k < 2; ++k)
{
for (int j = 0; j < 3; ++j)

{
cout << " "<< ving[k][j];
sum2 = sum2 + ving[k][j];

}
cout << endl;

2D Arrays as Function
Parameters

• 2-D arrays are always passed by reference.

• The column dimension must be specified. The
leftmost dimension (row) may be empty [].

• Function prototype example:
• int rowAverage(int Arr[][COLSIZE], int whichRow);

• Array declaration in main:
• int table [ROWSIZE][COLSIZE];

• Function invocation(call!) example:
avg = rowAverage(table, 3);

Documentation Style

• Well-documented functions always
include pre-conditions and post-conditions in the function’s comment
header block.

• Pre-conditions describe the conditions assumed to be true at the time the
function is called.

• If pre-conditions are not met, there is no guarantee that the function will work
correctly.

• Post-conditions describe the changes that will be made to the arguments
during the execution of the function.

Function example: Given array int a{NROWS][NCOLS] CALL
TO sum use cout << sum(a)<<endl;
• /* This function returns the sum of the values in */

• /* an array with NROWS rows and NCOLS columns. */

• // PreCondition: Array X has NROWS and NCOLS.

• // PostCondition: Sum of integer Values is returned.

• int sum(int x[][NCOLS]) // rows do not have to be specified

• {

• int total(0); // Declare and initialize local objects.

• for (int i=0; i<NROWS; ++i) // Compute a sum of the array values.

• {

• for (int j=0; j<NCOLS; ++j)

• { total += x[i][j];

• }

• }

• return total; // Return sum of array values.

• }

HAND IN HW # 16 3 each
24 pts
• Do the following Exam practice problems in

chapter 8

• 1 to 4 and 7 to 10

Matrices
•

Matrices as 2 D arrays! Study section
8.4 on matrices
Some matrix magic!
How do you solve the following (The short way is determinants as follows) ?

2x -8y =9

3x +6y =4

x=? y=?

DETERMINANT! Using rows and columns of numbers we create matrices and

evaluate them

By the determinate rules. With answers only to 3 decimals here (could be better

| 9 -8 |

| 4 6 | 54 - -32 86 8-27 -19

x= ---------- = ----------- = ------ =2.3888…. y = ------- = ----- = -0.52777….

| 2 -8 | 12 - -24 36 36 36

| 3 6 |

check first equation 2 *2.3888 – 8* (-0.5278) = 9.0004 (depends on how

many decimals you keep in the intermediate calculations =9 if you keep all decimals

But the number depends on accuracy of coefficients to begin with

How do you solve the following 2 simultaneous equations

Here the Gauss Elimination technique is shown.

1. Elimination step use multiplies to eliminate variables

2. Back substitute to get answers

3. We use functions to be presented in an example to follow that

do the above two steps once we put the coefficients into a 2

dimensional array for this problem and for 3 simultaneous

equations to follow.

2x -8y =9 a.

3x +6y =4 b.

x=? y=?

1. 2x – 8y =9

mult b. by 2/3 2x +4y = 8/3

SubTract -12y = 9-2 2/3 = 6.333333……

y= - 6.333…/12 = - .5277777…=- as before

Back substitute y into equation 1

2x = 8(-.5275) +9 = 4.777777….

x = 4.77777/2 = 2.388888…. As before!

Consider again

2x -8y =9

3x +6y =4

x=? y=?

We consider in C++ an entity that keeps track of values in rows and columns

an array!

So we can create a 2 Dimensional array from the above equations as

2 -8 9 or two rows and three columns each position can be referred

3 6 4 to the by what row number and what column number the

value is in computers the first row is the 0th row ,

as is the first columns the 0th column.

(MATLAB uses 1 to define the first row And column).

So the member at

0, 2 = 9 in this case,

1,2 =4 so 0,1 =? 1,0 =?

We define an array in C++ with the declaration giving its dimension

Initializing the values like below, or from input from the keypad or a file!

for the values above 2 rows and 3 columns we can use a row by row

Initialization. So in dealing with 2 D matrices 2D arrays are perfect!

int ving[2] [3] = {2, -8, 9, 3, 6, 4}; or int ving[2] [3] ={ (2, -8, 9), (3, 6, 4) };

// another DEMO OF ARRAY AND MATRIX
#include<iostream> //Required for cout
using namespace std;
int main()
{
// Declare and initialize objects.
double s[6] = { 1, 4, 7, 4.9, 5.1, 20.45 };
double sum1(0), sum2(0);
int ving[2][3] = { 2,-8,9,3,6,4 };
// or int ving[2][3] = { {2, -8, 9}, {3, 6, 4} };
for (int i = 0; i < 6; ++i)
sum1 = sum1 + s[i];

cout << endl;
cout << "sum1= " << sum1 << endl;
for (int k = 0; k < 2; ++k)
{
for (int j = 0; j < 3; ++j)
{

cout << " "<< ving[k][j];
sum2 = sum2 + ving[k][j];

}
cout << endl;

}
cout << "sum1 = " << sum1 << " sum2= " << sum2 << endl;
return(0); // Exit program

}

8.5 Numerical Technique: Solution
to Simultaneous Equations

Graphical Interpretation

• Solving two simultaneous

(linear) equations is finding

the point at which the lines

intersect.

• Not all lines intersect,

therefore there is not

always a solution.

• In 2D, parallel lines

do not intersect

unless they are

identical lines.

• When the lines are

identical, there is no

single point at which they

intersect.

Graphical Interpretation (2 equations
ax +by +cz= d
ex +fy +gz=h

each defines plane whose solutions look like) First
image 9 (a) is a line second (b) are no solutions of
x,y,z that are simultaneous on both equations ie
intersecting planes. Last both equations are really
the same plane

• In .

gauss elimination of the following represented by fig (a) below.
3x +2y –z = 10
-x +3y +2z = 5
x - y -x = -1
other possibilities are not

a unique set of x,y,z. but
a line fig (b) no solution fig (c)
three lines fig (d) or two lines
fig (e)
2 Dim array form to solution
to follow
a(0,0)x+a(0,1)y +a(0,2)z=a(0,3)
a(1,0)x+a(1,1)y +a(1,2)z=a(1,3)
a(2,0)x+a(2,1)y +a(2,2)z=a(2,3)

equations and the solution
presented works with many
situation all you need to get
x,y,z is the values of the two
dimensional array (matrix).
a(0,0)x+a(0,1)y +a(0,2)z=a(0,3)
a(1,0)x+a(1,1)y +a(1,2)z=a(1,3)
a(2,0)x+a(2,1)y +a(2,2)z=a(2,3)

Problem Solving Applied: Electrical-Circuit Analysis using
Kirchoff laws we get 3 simultaneous equations. We know Vs and
Rs and have to solve for 3 currents i1, i2 and i3 whichare the
unkowns x,y,z in previous slide. Original physics equations are
transformed to the a(i,j) array form as follows.

(R1 +R2)i1 – R2i2 +0i3 =V1 a(0,0) =R1+R2 a(0,1)= - R2 a(0,2)=0 a(0,3)=V1

-R2i1 +(R2+R3+R4)i2 –R4i3=0 a(1,0) = -R2 a(1,1)=R2+R3+R4 a(1,2)=-R4 a(1,3)=0

0i1-R4i2 +(R4+R5)i3 = -V2 a(2,0) = 0 a(2,1)= -R4 a(2,2)=(R4+R5) a(2,3)= -V2

Problem Solving Applied:
Electrical-Circuit Analysis

Problem Solving Applied:
Electrical-Circuit Analysis

Problem Solving Applied:
Electrical-Circuit Analysis

/* Program chapter8_6 */
/* This program uses Gauss elimination to determine the mesh currents for
a circuit. */
#include <iostream> //Required for cin, cout
using namespace std;
const int N = 3; // Define global constant for number of unknowns.
void eliminate(double a[][N+1], int n, int index);
// Declare function prototypes.

void back_substitute(double a[][N+1],
int n, double soln[N]);
int main()
{

double r1, r2, r3, r4, r5, v1, v2, a[N][N+1], soln[N]; // Declare objects.
“// Get user input. Specific for this problem

cout << "Enter resistor values in ohms: \n << "(R1, R2, R3, R4, R5) \n";
cin >> r1 >> r2 >> r3 >> r4 >> r5;
cout << "Enter voltage values in volts: \n« << "(V1, V2) \n";
cin >> v1 >> v2;

// Specify equation coefficients.
a[0][0] = r1 + r2;
a[0][1] = a[1][0] = -r2;
a[0][2] = a[2][0] = a[1][3] = 0;
a[1][1] = r2 + r3 + r4;

a[1][2] = a[2][1] = -r4;
a[2][2] = r4 + r5;
a[0][3] = v1;
a[2][3] = -v2;

// Perform elimination step.
for (int index=0; index<N-1; index++)
{
eliminate(a,N,index);

}

// Perform back substitution step. Get answers
back_substitute(a,N,soln);
// Print solution.
cout << "\nSolution: \n";
for (int i=0; i<N; ++i)
{
cout << "Mesh Current " << i+1 << ": "<< soln[i] <<

endl;
}
// Exit program.
return 0;

}
/*---*/

/* This function performs the elimination step. */

void eliminate(double a[][N+1], int n, int index)

{ double scale_factor; // Declare objects.

// Eliminate object from equations.

for (int row=index+1; row<n; ++row)

{

scale_factor = -a[row][index]/a[index][index];

a[row][index] = 0;

for (int col=index+1; col<=n; ++col)

{

a[row][col] += a[index][col]*scale_factor;

}

}

// Void return.

return;

}

/*---*/

/* This function performs the back substitution.
*/
void back_substitute(double a[][N + 1], int n,
double soln[])
{
// Perform back substitution in each equation.
soln[n - 1] = a[n - 1][n] / a[n - 1][n - 1];
for (int row = n - 2; row >= 0; --row)
{
for (int col = n - 1; col >= row + 1; --col)
{
a[row][n] -= soln[col] * a[row][col];
}
soln[row] = a[row][n] / a[row][row];
}
// Void return.
return;
}

HAND IN LABORATORY TASK: LAB #28

The text solve by hand using Gauss elimination the following 3

simultaneous equations in section 8.5.

Study the text solution and then use the previous program,

set up the matrix a(i,j) appropriate for these equations and solve

for x, y, z. (just consider i1 is x, i2 is y and i3 is z. You are setting

The program for any a(i,j) for this problem. Be sure to keep it as

An important example

3x +2y-z=10

-x +3y +2z =5

x – y –z =-1

Use code like this to load the values of a(i,j) instead of loading

One at a time as in the original program code 8_6
for (int i=0; i<N; ++i) {//every row 3

for (int j=0; j<N+1; ++j)//every col 4!
cin >> array[i][j];

}
Check your answers to the text solution.. Did you get the right ones?? Yes or NO!

If not then check your matrix to be sure the values are correct

