Outline

Objectives
1. Addresses and Pointers
2. Pointers to Array Elements
3. Problem Solving Applied: El Nifio-Southern Oscillation
Data
4. Dynamic Memory Allocation
5. Problem Solving Applied: Seismic Event Detection
6. Common Errors Using new and delete
/. Linked Data Structures
8. The C++ Standard Template Library
5. Problem Solving Applied: Concordance of a Text File

Objectives

Develop problem solutions in C++ containing:

* Addresses and pointers

* Pointers to arrays

* Dynamic memory allocation

* Pointers with character strings

* new and delete

* Linked data structures

* Classes from the C++ Standard Template Library
* iterators

Addresses and Pointers

Addresses and Pointers

* A pointer is an object that holds the memory address of anot
object.

* If a variable p contains the address of another variable g, then piis
said to point to q.

* If gis avariable at location 100 in memory, then p would have the
value 100 (g’s address).

Memory snapshot:

Address Operator

* The operator & is called the operator.

* When the & operator is applied to an object, the
result is the address of the object.

//Example:

int x=75;

cout << "x 1s " << Xx;

cout << "\nthe addres of x is " << &x << endl;

X [Ox7fff8164] 75

Pointer Assignment

* Pointer types are declared using the pointer operator *, also called
the dereferencing operator.

* When declaring more than one pointer variable, the * operator
must precede each identifier.

Declaring Pointer Variables

Syntax:
type_specifier *identifierl[, *identifier2[,...]];

Examples

int *iPtr; // 1Ptr is a pointer to int type.

int *1Ptrl, *iPtr2; // i1Ptrl and iPtr2 are both pointers to int type.

double *iPtr3, 1iPtr4; // iPtr3 is a pointer to double type.
// 1Ptr4 is a double

Examples

int *1Ptr, 1=6;
char* s, str[] = "example';
double *dPtr, d=1.25;

v i e

Initialization and Assignment

* Pointer types may be initialized at
the time they are declared.

* Pointer types may be assigned new values using the
assignment operator.

Examples

int *1Ptr=0;
char *s=NULL;//predefined constant in iostre
double *dPtr=NULL;

a IPtr

. dPtr

Assignment

* The assignment operator (=) is
defined for pointers of the same base type.

* The right operand of the assignment operator can be any
expression that evaluates to the same type as the left operand.

\/

int x, *Xp, *1p;
Xp = &X; Xp
1P = XP, ip

X

_
-

The Base Type

* The base type of a pointer refers to
the type of object the pointer is referencing.

* The base type of a pointer defines the size of the object the
pointer is referencing.

* The size of a pointer is independent of its base type.

p and g are the same (4 bytes**), but p points to 4 bytes** and
g points to 8 bytes**

**compiler dependent

Examples

int * p(5), *1Ptr=&p;
double q, *dPtr=&q;

IPtr ° 5
dPtr °

?

?

sizeof p 1s 4
sizeof g 1s 8
sizeof 1Ptr 1is 4
sizeof dPtr is 4

Base Type

* A pointers base type determines how
the object referenced by the pointer will be interpreted.

* The declaration:
1nt *p;
declares p to be a pointer to Tnt. What

ever P points to will be interpreted as an
1nt, ie 4 bytes.

* Base type also defines pointer arithmetic.

Pointer Arithmetic

* Four arithmetic operations are supported:
+, -, ++, --

* Arithmetic is performed relative to the base type of the pointer.

* When applied to pointers, ++ means increment pointer to point to
next object.

Example: p++;
if pisdefinedas int *p, p will beincremented by 4 (bytes).
if pis defined as double *p, p will beincremented by 8(bytes).

Example

int *p;
cout << "size of char 1s
<< sizeof(char) << endl;
cout << "size of int is "
<< sizeof(int) << endl;
cout << "si1ze of double 1is "
<< sizeof(double) << endl;
cout << "size of float i1s "
<< sizeof(float) << endl;
cout << "the size of p 1s "
<< sizeof(p) << endl;

size of char is 1
size of int is 4
size of double is !
size of float 1is 4
the size of p 1is 4

Comparing Pointers

* You may compare pointers using relational operators
* Common comparisons are:
check for null pointer (p == NULL)

Note: since NULL evaluates as false, and any other pointer
evaluates as true, checking for a null pointer can be done as (!Ip)

check if two pointers are pointing to the same object

(p==q)
Note: (*p == *q) means they are pointing to equivalent, but
not necessarily the same data.

Pointers to Array Elements

1D Arrays

* The name of an array is the address
of the first element (i.e. a pointer to the first element).

* Arrays and pointers may often be used interchangeably.
Example

int num[4] = {1,2,3,4}, *p;

p = num; //same as p = &um[0];

cout << *p <<endl; 1
++p; 2
cout << *p;

""""""
...

1D Arrays

* You can index a pointer using []
operator.

Example

char mystring[] = "This 1is a string";

char *str;

str = myString;

for(int 1 =0; str[i]; i++) //look for null
cout << str[i];

Output:
This is a string

Arrays and Pointers

* When an array is defined, memory is
allocated according to the specified size of the array.

* The name of an array is a pointer to the first
element. However, the value of the pointer can not
be changed. It will always point to the same memor
location.

* When a pointer is defined, 4 bytes™ are allocated to
store a memory address.

* The value assigned to a pointer can be modified
(reassigned to point to a different object).

Arrays of Pointers

* You may define arrays of pointers like any other data type in
Example

int num=8§;

//declare an array of 10 pointers to int
int *1Ptrs[10];

//first element is assigned a value
1Ptrs[0] = #

//output the value of num

cout << *iPtrs[0];

Pointers As Arguments to
Functions

* Pointers may be passed either "by value" or "by reference".

* In either case, the pointer can be used to modify the object to
which it is pointing.

* Only when passed by reference can the pointer argument itself be
modified.

Common Pointer Problems

* Using uninitialized pointers
nt *1Ptr;
*1Ptr = 100;

* Failing to reset a pointer after altering it’s
value.

* Incorrect/unintended syntax.

Problem Solving Applied:
El Nino-Southern Oscillation Data

Problem Solving Applied:
El Nino-Southern Oscillation Data

1. PROBLEM STATEMENT

Determine the year and quarter with the strongest El Niiio conditions.

2. INPUT/OUTPUT DESCRIPTION
The I/O diagram shows the data file as the input and the year and quarter as output.

ENSO

Index
O e, —

Year Maximum
Quarter EI Nifio Condition

Problem Solving Applied:
El Nino-Southern Oscillation Data

3. HAND EXAMPLE

Assume that the data file contained the following data:
Year Quarter ENSO Index

1990 1 0.6
1991 1 0.2
1992 1 1.1
1993 1 0.5
1994 1 0.1
1995 1 1.2
1996 1 —0.3
1997 1 —0.1
1998 1 2.2
1999 1 —0.7
2000 1 —1.1

The corresponding output would then be the following report:

Maximum E]1 Nino Conditions in Data file
Year: 1998, Quarter: 1

Problem Solving Applied:
El Nino-Southern Oscillation Data

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a set of
sequential steps.

Decomposition Outline

1. Read the ENOS data into arrays and determine the maximum positive index.

2. Print the year and quarter that go with the maximum intensity.

Dynamic Memory Allocation

Allocation of Memory

* Memory for variables is allocated from
one of several classes:
* Run-time stack
Local variables
Formal parameters
Managed by the compiler
* Heap
Dynamic storage
Managed by storage allocator
* Global Data
Static (global) variables
Managed by the compiler

Dynamic Memory Allocation

* Dynamically allocated memory is
defined at runtime.

* Dynamic allocation of memory allows for more
efficient use of a finite resource.

* Dynamic allocation is often used to support
dynamic data structures such as stacks, queues
linked lists and binary trees.

* Dynamically allocated memory should be freed
during execution when it is no longer needed.

Operator new

* Replaces malloc() used in C

* Allocates a block of memory from the
heap.

* Returns the address of the first byte.

* |f allocation fails, new throws an
exception that terminates the

program (or returns NULL on older
compilers).

Example

int *1Ptr;
1Ptr = new 1nt;// 4 bytes are allocated
// 1Ptr points to 1lst byte
double *dPtr;
dPtr = new double[20]; // 160 bytes allocat
// dPtr points to 1lst b

iPtr. ® ?

heap

dPtr . ® ?

[nitializing Dynamically
Allocated Memory

* To initialize a dynamically allocated
object, the initial value is provided inside parentheses following the

type.
Example:

int *1Ptr;
1Ptr = new 1nt(100); //4 bytes allocated
//initial value: 100

Operator delete

* Replaces free() used in C.

*The delete operator frees memory
allocated by new.

*Using delete to attempt to free any
other type of address will result in errors

Example

int *1Ptr;
1Ptr = new 1nt(100);
cout << *ptr;

ptr ®

delete 1Ptr;
ptr

//memory manager i1s now free to reallocate
//freed memory to other programs
//accessing freed memory may or may not res
//1n errors. Good 1dea to set pointer to nu
1Ptr = NULL;

Example: Dynamically
Allocated Arrays

double *dptr;
const 1nt SIZE = 10;
dptr = new double[SIZE]; //80 bytes
for(int 1=0; 1<SIZE; ++1)

cin >> dptr[i1];
funl(dptr, SIZE); // pass array to funl
delete [] dptr; //free all 10 elements

Problem Solving Applied:
Seismic Event Detection

Problem Solving Applied:

Seismic Event Detection
1. PROBLEM STATEMENT

Determine the locations of possible seismic events using a set of seismometer measure-
ments from a data file.

2. INPUT/OUTPUT DESCRIPTION

The inputs to this program are a data file named seismic.dat and the number of measure-
ments to use for short-time power and longtime power. The output is a report giving the
times of potential seismic events.

Short power window size ——

Long power window size ——

O

geismic.dat

— Seismic event times

Y

3. HAND EXAMPLE

Suppose that a data file contains the following data. which includes number of points to fol-
low (11) and time interval between points (0.01). followed by the 11 values that correspond
to a sequence of values xg, x1, ... x;0:

11 0.01
1 2 1 1 1 5 4 2 1 1 1

If the short-time power measurement 1s made using two samples and the longtime power
measurement 1s made using five measurements, then we can compute power ratios, begin-
ning with the rightmost point. in a window:

12111542111
L

short window
|

long window
Point x4: Short-time power = (1 + 1)/2 =1

Long-time power= (1 + 1 + 1 + 4 + 1)/5 =1.6
Ratio = 1/1.6 = 0.63

12111542111
L

short window
| |

long window

Point =5: Short-time power = (25 + 1)/2 = 13
Long-time power = (25 + 1 + 1 + 1 + 4)/5 = 6.4
Ratio = 13/6.4 = 2.03
121115 4 2 1 11
L1
short window
[|

long window

Point x=6: Short-time power = (16 + 25)/2 = 20.5
Long-time power = (16 + 25 + 1 + 1 + 1}/5 = 8.8
Ratiec = 20.5/8.8 = 2.33

1 2 1 115 4 2 1 1 1

L1
short window
long window
Point =7: Short-time power = (& + 16)/2 = 10
Long-time power = (& + 16 + 25 + 1 + 1)/5 = 9_4
Ratioc = 10/9.4 = 1.06

12111542 111
L1

short window
long window

Point x8: Short-time power = (1 + 4) /2

[
b3
Ln

Long-time power = (1 + 4 + 16 + 25 + 1} /5

ll
o
i

Ratio = 2.5/9.4 = 0.27

12111542 111

short window

long window

Problem Solving Applied:
Seismic Event Detection

Point =x9: Short-time power = (1 + 1)/2 =1
Long-time power = (1 + 1 + 4 + 16 + 25)/5 = 9.4
Ratio = 1/9.4 = 0.11

12111542111

L1
ghort window
long window
I
Point x10: Short-time power = (1 + 1)/2 = 1

Long-time power = (1 + 1 + 1 + 4 + 16)/5 = 4.6

Ratio = 1/4.6 = 0.22

By using the previous ratios computed. possible seismic events occurred at points x5 and
X6. Because the time interval between points is 0.01 second. the times that correspond to
the seismic events are 0.05 and 0.06 second. (We assume that the first point in the file
occurred at 0.0 second.)

Problem Solving Applied:
Seismic Event Detection

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline because it divides the solution into a series of
sequential steps.

Decomposition Qutline

1. Read data header and allocate memory.

2. Read seismic data from the data file and read numbers of measurement for power
from the keyboard.

3. Compute power ratios and print possible seismic event times.
Step 3 involves computing power ratios and comparing them to the threshold to determine

whether a possible event occurred. Because we need to compute two power measurements
for each possible event location. we implement the power measurement as a function.

Common Errors Using new
and delete

Memory Management

* Dynamically allocated memory should
always be returned to the heap onceitisnolo
needed to allow for the reuse of the memory.

* Careful tracking of pointers to this memory is
required.

* Strategies for managing pointers often involve
establishing an owner of each an every piece of
dynamic memory.

The owner is responsible for deleting the memory when it
is no longer needed.

Common Dynamic Memory
Errors

» Referencing a pointer to dynamically allocated
memory after delete has been called to return the
memory to the heap.

* Failing to return memory when it is no longer being
used.

Often called a memory leak.

* Using the delete operator with a pointer that does
not reference memory that has been dynamically
allocated using the new operator.

* Omitting the square brackets when using delete to
free a dynamically allocated array.

Linked Data Structures

Why Linked Data Structures?

* Array-based data structures (C++
arrays, vector, string) are efficient for accessing
elements.
Offset-based access to elements from the base address is ve
fast.
* The restriction that memory is a contiguous block has
consequences.

STL makes this less painful for the programmer by
encapsulating memory management into the objects; howe
there are still consequences.

* Insertion and deletion of elements are expensive

Copyright © 2012 Pearson Education, Inc.

Linked Data Structures

* Linked data structures avoid the
restriction that the memory of a data structure be contiguo

* Pointers connect (i.e. link) pieces of the data structure
together.
* Simple linked data structures include:
Linked lists
Stacks
Queues

Linked List

* A linked list is a data structure in which each
element of the list consists of the data stored in
the element and a pointer to the next element in
the list.

Usually keep a pointer to the first element of the list
(the head of the list)

* Inserting an element to a particular place in the
list is very efficient, but traversing the list is not.

This is the exact opposite characteristics of array
operations!

Stack

* A queue is a sequential container like
the linked list and queue.

* Last-In, First-Out (LIFO) data
structure.

Thus one may only remove (pop) from one ‘end’ of the data
structure, and only insert (push) to the same ‘end’.

* Essential in the design of design of compilers, operating
systems, etc.

Queue

* A queue is a sequential container like

the linked list.
* First-In, First-Out (FIFO) data
structure.

Thus one may only remove (pop) from one ‘end’ of the data
structure, and only insert (push) to the other ‘end’.

» Often used in processing of job requests.
E.g. printer queues.

The C++ Standard Template
Library (STL)

Sequential STL Containers

* List
* Stack
* Queue

STL List

* Alist is a data structure organized as a collection of element:
or nodes, that are linked by pointers.

* Elements can be added at any position in a list in constant
time by reassigning pointers.

* List have many useful applications in the organization large
amounts of data.

The STL list Class

* list isa class template definedin the header file
Example

#include <string>
#include <list>

using namespace std;

Tist<string> word; //list of strings

Methods of list Class

o Elements can be added to and removed
from any position in a list using the
appropriate method and an iterator.

oAn iterator is similar to a pointer, but is usually
implemented as a class object.

oCommon Methods of List Class:
bool empty()

iterator insert()
1terator remove()
iterator begin()
1terator end()

Example

Tist<string> wordList;
list<string>::1terator 1ter =

wordList.begin();
1ter = wordList.insert(iter, "hello");
wordList.insert(iter,"world");
(1ter=wordList.begin();
1ter!= wordList.end();
1ter++)

cout << *1ter << .
hello world

The STL queue Class

° queue isa class template defined inthe header fil
queue.

Example

#include <queue>
using namespace std;

gqueue<int> word; //queue of 1integers

Methods of queue Class

bool empty();

void pop(); //remove from front
vold push(data_type); //add to end
data_type front(); //return front
data_type back(); //return end

Example

#include <queue>
#include <iostream>
using namespace std;

queue<int> theQueue;
theQueue.push(10);
theQueue.push(20);
theQueue.push(30);

while (!theQueue.empty()) {

cout << theQueue.front() << endl;
theQueue.pop();

}

10
20
30

The STL stack Class

°* stack isa class template defined inthe header fil
stack.

Example

#include <stack>
using namespace std;

stack<int> word; //stack of integers

Methods of stack Class

bool empty();

void pop(); //remove from top

vold push(data_type); //add to top
data_type top(); //return top

Example

#1nclude <stack>
#include <iostream>
using namespace std;

stack<int> theStack;
theStack.push(10);
theStack.push(20);
theStack.push(30);

while (! theStack.empty()) {

cout << theStack.top() << endl;
theStack.pop(Q);

}

30
20
10

Problem Solving Applied:
Concordance of a Text File

Problem Solving Applied:
Concordance of a Text File

1. PROBLEM STATEMENT

Build a concordance of a text file. Write the concordance. along with a count of the unique
words in the text file. to an output file.

2. INPUT/OUTPUT DESCRIPTION

The following diagram shows that the input to the program is a text file. and that the output
is a concordance of the text file along with the count of unique words. We will use the
1is=t class to define a list, where each element in the list is of type string.

——» Concordance of
text file

— Number of unique
words

O

Text file

Problem Solving Applied:
Concordance of a Text File

3. HAND EXAMPLE

Suppose our text file contained only the following text:

A concordance of a text file is an alphabetical list of
the unique words in the text file.

Our program would generate the following output file:

There are 13 distinect words in the text file:
a

an
alphabetical
concordance
file

in

is

list

of

text

the

unigue

words

4. ALGORITHM DEVELOPMENT

We first develop the decomposition outline to break the solution into a series of sequential I
steps:

Decomposition Outline

1. Open input and output files.

2. Read a word from the input file.

3. Insert word if the word is not already in the list.
4. Alphabetize list of unique words.

5. Write the size and contents of the list to output file.

Step 2 in the decomposition outline involves a loop that reads the text file one char-
acter at a time until a nonalpha character is reached. A nonalpha character will signal the
end of a word. Other than their use as delimiters between words, all nonalpha characters
will be ignored. All alpha characters will be converted to lowercase. We will use a function
to perform this task. Step 3 requires that we insert a word if it is not already in the list. We
will use a function that utilizes member functions of the /ist class. Step 4 involves sorting
the list in ascending order. We will use the generic sort() function. Since the list may be
long. step 5 will orint the list three words ver line. We will use a function to perform this
task.

