
Outline
Objectives

1. Addresses and Pointers

2. Pointers to Array Elements

3. Problem Solving Applied: El Niño-Southern Oscillation
Data

4. Dynamic Memory Allocation

5. Problem Solving Applied: Seismic Event Detection

6. Common Errors Using new and delete

7. Linked Data Structures

8. The C++ Standard Template Library

9. Problem Solving Applied: Concordance of a Text File

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Objectives

Develop problem solutions in C++ containing:

• Addresses and pointers

• Pointers to arrays

• Dynamic memory allocation

• Pointers with character strings

• new and delete

• Linked data structures

• Classes from the C++ Standard Template Library

• iterators

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Addresses and Pointers

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Addresses and Pointers

• A pointer is an object that holds the memory address of another
object.

• If a variable p contains the address of another variable q, then p is
said to point to q.

• If q is a variable at location 100 in memory, then p would have the
value 100 (q’s address).
• Memory snapshot:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

q p

Address Operator

• The operator & is called the address operator.
• When the & operator is applied to an object, the

result is the address of the object.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

//Example:
int x=75;
cout << "x is " << x;
cout << "\nthe addres of x is " << &x << endl;

75 x [0x7fff8164]

Pointer Assignment

• Pointer types are declared using the pointer operator *, also called
the dereferencing operator.

• When declaring more than one pointer variable, the * operator
must precede each identifier.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Declaring Pointer Variables

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Syntax:
type_specifier *identifier1[, *identifier2[,…]];

Examples
int *iPtr; // iPtr is a pointer to int type.
int *iPtr1, *iPtr2; // iPtr1 and iPtr2 are both pointers to int type.
double *iPtr3, iPtr4; // iPtr3 is a pointer to double type.
 // iPtr4 is a double

Examples

int *iPtr, i=6;
char* s, str[] = "example";
double *dPtr, d=1.25;

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

iPtr

s

dPtr

6

"example"

1.25

 i

str

 d

Initialization and Assignment

• Pointer types may be initialized at
the time they are declared.

• Pointer types may be assigned new values using the
assignment operator.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Examples

int *iPtr=0;
char *s=NULL;//predefined constant in iostream
double *dPtr=NULL;

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

iPtr

s

dPtr

Assignment

• The assignment operator (=) is
defined for pointers of the same base type.

• The right operand of the assignment operator can be any
expression that evaluates to the same type as the left operand.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

int x, *xp, *ip;

xp = &x;

ip = xp;

x

xp

ip

The Base Type

• The base type of a pointer refers to
the type of object the pointer is referencing.

• The base type of a pointer defines the size of the object the
pointer is referencing.

• The size of a pointer is independent of its base type.
• p and q are the same (4 bytes**), but p points to 4 bytes** and
q points to 8 bytes**

**compiler dependent

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Examples

int * p(5), *iPtr=&p;
double q, *dPtr=&q;

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

dPtr

p

q

5

?

?

iPtr

sizeof p is 4

sizeof q is 8

sizeof iPtr is 4

sizeof dPtr is 4

Base Type

• A pointers base type determines how
the object referenced by the pointer will be interpreted.

• The declaration:

int *p;

declares p to be a pointer to int. What
ever p points to will be interpreted as an
int, ie 4 bytes.

• Base type also defines pointer arithmetic.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Pointer Arithmetic
• Four arithmetic operations are supported:
+, -, ++, --

• Arithmetic is performed relative to the base type of the pointer.
• When applied to pointers, ++ means increment pointer to point to

next object.

Example: p++;
• if p is defined as int *p, p will be incremented by 4 (bytes).
• if p is defined as double *p, p will be incremented by 8(bytes).

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example
int *p;
cout << "size of char is "
 << sizeof(char) << endl;
cout << "size of int is "
 << sizeof(int) << endl;
cout << "size of double is "
 << sizeof(double) << endl;
cout << "size of float is "
 << sizeof(float) << endl;
cout << "the size of p is "
 << sizeof(p) << endl; C

o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Output:

size of char is 1

size of int is 4

size of double is 8

size of float is 4

the size of p is 4

Comparing Pointers

• You may compare pointers using relational operators
• Common comparisons are:

• check for null pointer (p == NULL)
• Note: since NULL evaluates as false, and any other pointer

evaluates as true, checking for a null pointer can be done as (!p)
• check if two pointers are pointing to the same object

(p == q)

• Note: (*p == *q) means they are pointing to equivalent, but
not necessarily the same data.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Pointers to Array Elements

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

1D Arrays

• The name of an array is the address
of the first element (i.e. a pointer to the first element).

• Arrays and pointers may often be used interchangeably.
Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

int num[4] = {1,2,3,4}, *p;
p = num; //same as p = &num[0];
cout << *p <<endl;
++p;
cout << *p;

Output:

1
2

1D Arrays

• You can index a pointer using []
operator.

Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

char myString[] = "This is a string";
char *str;
str = myString;
for(int i =0; str[i]; i++) //look for null
 cout << str[i];

Output:

This is a string

Arrays and Pointers

• When an array is defined, memory is
allocated according to the specified size of the array.

• The name of an array is a pointer to the first
element. However, the value of the pointer can not
be changed. It will always point to the same memory
location.

• When a pointer is defined, 4 bytes* are allocated to
store a memory address.

• The value assigned to a pointer can be modified
(reassigned to point to a different object).

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Arrays of Pointers

• You may define arrays of pointers like any other data type in C++

Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

int num=8;
//declare an array of 10 pointers to int
int *iPtrs[10];
//first element is assigned a value
iPtrs[0] = #
//output the value of num
cout << *iPtrs[0];

Pointers As Arguments to
Functions

• Pointers may be passed either "by value" or "by reference".

• In either case, the pointer can be used to modify the object to
which it is pointing.

• Only when passed by reference can the pointer argument itself be
modified.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Common Pointer Problems

• Using uninitialized pointers

int *iPtr;

*iPtr = 100;

iPtr has not been initialized. The value 100
will be assigned to some memory location.
Which one determines the error.

• Failing to reset a pointer after altering it’s
value.

• Incorrect/unintended syntax.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
El Niño-Southern Oscillation Data

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
El Niño-Southern Oscillation Data

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
El Niño-Southern Oscillation Data

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
El Niño-Southern Oscillation Data

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Dynamic Memory Allocation

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Allocation of Memory
• Memory for variables is allocated from

one of several classes:
• Run-time stack

• Local variables
• Formal parameters
• Managed by the compiler

• Heap
• Dynamic storage
• Managed by storage allocator

• Global Data
• Static (global) variables
• Managed by the compiler

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Stack

Heap

Global data

Program code

Dynamic Memory Allocation

• Dynamically allocated memory is
defined at runtime.

• Dynamic allocation of memory allows for more
efficient use of a finite resource.

• Dynamic allocation is often used to support
dynamic data structures such as stacks, queues,
linked lists and binary trees.

• Dynamically allocated memory should be freed
during execution when it is no longer needed.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Operator new

•Replaces malloc() used in C

•Allocates a block of memory from the
heap.

•Returns the address of the first byte.

• If allocation fails, new throws an
exception that terminates the
program (or returns NULL on older
compilers).

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example
int *iPtr;
iPtr = new int;// 4 bytes are allocated
 // iPtr points to 1st byte
double *dPtr;
dPtr = new double[20]; // 160 bytes allocated
 // dPtr points to 1st byte

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

?

?

?

?

?

…

?

?

heap

iPtr

dPtr

Initializing Dynamically
Allocated Memory

• To initialize a dynamically allocated
object, the initial value is provided inside parentheses following the
type.

Example:

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

int *iPtr;
iPtr = new int(100); //4 bytes allocated
 //initial value: 100

Operator delete

•Replaces free() used in C.

• The delete operator frees memory
allocated by new.

•Using delete to attempt to free any
other type of address will result in errors.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example
int *iPtr;
iPtr = new int(100);
cout << *ptr;

delete iPtr;

//memory manager is now free to reallocate
//freed memory to other programs
//accessing freed memory may or may not result
//in errors. Good idea to set pointer to null
iPtr = NULL;

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

100 ptr

? ptr

Example: Dynamically
Allocated Arrays

double *dptr;
const int SIZE = 10;
dptr = new double[SIZE]; //80 bytes
for(int i=0; i<SIZE; ++i)
 cin >> dptr[i];
fun1(dptr, SIZE); // pass array to fun1
delete [] dptr; //free all 10 elements

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Seismic Event Detection

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Common Errors Using new
and delete

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Memory Management

• Dynamically allocated memory should
always be returned to the heap once it is no longer
needed to allow for the reuse of the memory.

• Careful tracking of pointers to this memory is
required.

• Strategies for managing pointers often involve
establishing an owner of each an every piece of
dynamic memory.

• The owner is responsible for deleting the memory when it
is no longer needed.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Common Dynamic Memory
Errors
• Referencing a pointer to dynamically allocated

memory after delete has been called to return the
memory to the heap.

• Failing to return memory when it is no longer being
used.

• Often called a memory leak.

• Using the delete operator with a pointer that does
not reference memory that has been dynamically
allocated using the new operator.

• Omitting the square brackets when using delete to
free a dynamically allocated array.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Linked Data Structures

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Why Linked Data Structures?

• Array-based data structures (C++
arrays, vector, string) are efficient for accessing
elements.

• Offset-based access to elements from the base address is very
fast.

• The restriction that memory is a contiguous block has
consequences.

• STL makes this less painful for the programmer by
encapsulating memory management into the objects; however
there are still consequences.

• Insertion and deletion of elements are expensive
Copyright © 2012 Pearson Education, Inc.

Linked Data Structures

• Linked data structures avoid the
restriction that the memory of a data structure be contiguous.

• Pointers connect (i.e. link) pieces of the data structure
together.

• Simple linked data structures include:

• Linked lists

• Stacks

• Queues

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Linked List

• A linked list is a data structure in which each
element of the list consists of the data stored in
the element and a pointer to the next element in
the list.

• Usually keep a pointer to the first element of the list
(the head of the list)

• Inserting an element to a particular place in the
list is very efficient, but traversing the list is not.

• This is the exact opposite characteristics of array
operations!

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Stack

• A queue is a sequential container like
the linked list and queue.

• Last-In, First-Out (LIFO) data
structure.

• Thus one may only remove (pop) from one ‘end’ of the data
structure, and only insert (push) to the same ‘end’.

• Essential in the design of design of compilers, operating
systems, etc.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Queue

• A queue is a sequential container like
the linked list.

• First-In, First-Out (FIFO) data
structure.

• Thus one may only remove (pop) from one ‘end’ of the data
structure, and only insert (push) to the other ‘end’.

• Often used in processing of job requests.

• E.g. printer queues.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

The C++ Standard Template
Library (STL)

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Sequential STL Containers

• List

• Stack

• Queue

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

STL List

• A list is a data structure organized as a collection of elements,
or nodes, that are linked by pointers.

• Elements can be added at any position in a list in constant
time by reassigning pointers.

• List have many useful applications in the organization large
amounts of data.

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

The STL list Class

• list is a class template defined in the header file list.

Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

#include <string>
#include <list>

using namespace std;

list<string> word; //list of strings

Methods of list Class

oElements can be added to and removed
from any position in a list using the
 appropriate method and an iterator.

oAn iterator is similar to a pointer, but is usually
implemented as a class object.

oCommon Methods of List Class:
bool empty()
iterator insert()
iterator remove()
iterator begin()
iterator end()

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example

list<string> wordList;
list<string>::iterator iter =

wordList.begin();

iter = wordList.insert(iter,"hello");
wordList.insert(iter,"world");
for (iter=wordList.begin();
 iter!= wordList.end();
 iter++)

 cout << *iter << " "; C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Output:

hello world

The STL queue Class

• queue is a class template defined in the header file
queue.

Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

#include <queue>

using namespace std;

queue<int> word; //queue of integers

Methods of queue Class

bool empty();

void pop(); //remove from front

void push(data_type); //add to end

data_type front(); //return front

data_type back(); //return end

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example

#include <queue>
#include <iostream>
using namespace std;
…
queue<int> theQueue;
theQueue.push(10);
theQueue.push(20);
theQueue.push(30);
while (!theQueue.empty()) {
 cout << theQueue.front() << endl;
 theQueue.pop();
}

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Output:

10

20

30

The STL stack Class

• stack is a class template defined in the header file
stack.

Example

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

#include <stack>

using namespace std;

stack<int> word; //stack of integers

Methods of stack Class

bool empty();

void pop(); //remove from top

void push(data_type); //add to top

data_type top(); //return top

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Example

#include <stack>
#include <iostream>
using namespace std;
…
stack<int> theStack;
theStack.push(10);
theStack.push(20);
theStack.push(30);
while (! theStack.empty()) {
 cout << theStack.top() << endl;
 theStack.pop();
}

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Output:

30

20

10

Problem Solving Applied:
Concordance of a Text File

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Concordance of a Text File

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Concordance of a Text File

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

Problem Solving Applied:
Concordance of a Text File

C
o
p

y
ri
g
h

t
©

 2
0

1
2

 P
e

a
rs

o
n

E
d

u
c
a

ti
o
n

,
In

c
.

