
+                  MATRIX VARIABLES AND TWO DIMENSIONAL ARRAYS  
 
Matrices are organized rows and columns of numbers that mathematical operations can be 
performed on. MATLAB is organized around the rules of matrix operations. We have been 
working with arrays or row vectors which are actually 1 x N matrices. 
It is suggested that the student run the MATLAB demo program on introductory 
MATLAB operations. 
 
% FROM THE MATLAB DEMO PROGRAM WE EXTRACT THE FOLLOWING MATRIX 
INFORMATION: 
 To enter a matrix, spaces are put between the elements and 
 semicolons are used to separate the rows. Brackets are placed 
 around the data. For example, to enter a 3-by-3 matrix A ( 3 rows and 3        
columns), type: 
 
A = [1 2 3;4 5 6;7 8 0]  
 
% which results in: 
A =     1     2     3 
          4     5     6 
          7     8     0 
 
% our matrix A can be transposed with: 
B = A'    
 
% which results in:  
B =     1     4     7 
           2     5     8 
           3     6     0 
 
% We note that the transpose interchanges the rows and columns. 
 
% Matrix multiplication is indicated with: Can you see what happens ? 
 
C = A * B   
 
% producing: 
C =   14    32    23 
         32    77    68 
         23    68   113 
 
% The first term of the result, 14, was formed by multiplying the first row of the A matrix 
with the first column of the B matrix in the manner of  
1x1 + 2x2 + 3x3 =14: (Like a dot product of two vectors! Row vector dot column vector!)  
The second term of C ,32, is in the first row and second column, hence we use the first 
row of A and the 2 nd column of B to compute 1x4 + 2x5 + 3x6 = 32 and so forth for each 
term. Another way of defining the matrix product is to think of the corresponding rows and 
columns in the matrices as vectors. To obtain the terms in the matrix that results from the 
product, we undertake the scaler product of a row vector with a column vector to get each 
term in the resulting matrix that corresponds to the row and column used in the other 
matrices. 
  
As a reminder( assuming the reader has seen matrices and related operations in 
mathematics)  when multiplying matrices, if we have an  M row by N column matrix, to form 
a product, the number of rows of the second matrix must be the same as the number of 
columns of the first. The dimension of the matrix formed in the product will have the number 
of rows of the first and the number of columns of the second. So if C is an M by N matrix 
and D is an N by P matrix the product  A*B = a matrix with dimension M by P. 
stated differently   (M BY N) * (N by P)  = also written (MxN)*(NxP)  = (M by P) or resulting 
in a  M x P matrix. Inner dimensions must match and the reverse order of multiplication is 
not possible by this definition unless their is a match in values. Square matrices can be 
multiplied in any order. 



Example:    D =[1 2 3; 7 8 9;1 2 5] ; and      P=[2 3; 7 7; 4 5]; 
   Or 3x 3 * 3 x 2 = 3 x 2 matrix 
 >> D*P 
ans = 
    28    32 
   106   122 
    36    42 
 
Note: >> P*D     ie   3 x 2 * 3 x 3 not possible by these rules. 
Error using  *  
Inner matrix dimensions must agree. 
                                                           
% A family of functions are available to calculate common matrix properties useful for 
solving a number of problems that can be done with matrices.  
Some examples follow: 
 
% determinant   the operator we have talked about for help in solving simultaneous 
solutions. 
 
 
det(A) 
ans =    27 
 
 
 
[m,n] = size(A) 
m = 3     % = number of rows 
n = 3     % = number of columns 
 
% Matrix operations are used to solve a large number of problems such as 
simultaneous equations, we will return a number of times later to the MATLAB matrix 
functions. 
 
                                               MATRIX VS. ARRAY OPERATIONS 
 
% MATLAB also permits us to treat the Matrix as an Array. The distinction 
being that in Array operations (such as .*,./,.^) we perform the  
Calculations element by element. With the above matrices we illustrate some array 
operations 
 
ARRAY MULTIPLICATION 
» A.*B 
ans =     1     8    21 
              8    25    48 
             21    48     0 
 Here we note that the first element of A is multiplied by the first 
 element of B. ditto for the second elements, etc. 
 On the other hand 
 MATRIX MULTIPLICATION gives quite a different result. 
» A*B 
ans =14    32    23 
         32    77    68 
         23    68   113 
 
% MATRIX MULTIPLICATION A*B is not in general the same as B*A(may not even be 
possible) 
 Consider this example 
» C =[ 3 4 ; 6 7 ;1 2] 
 
C =  3     4 
        6     7 
        1     2 



» A*C 
ans =18    24 
         48    63 
         69    84 
% Hence  A*C  a 3 by 3 * 3 by 2 gives us a 3 by 2 answer. 
 
% What would the result be for C*A?? 
 
ARRAY MULTIPLICATION between matrices also requires dimensions to be equal since 
we do the calculation term by term. 
% if we try A.*C as an array calculation we get 
» A.*C 
 Error using ══ .*    Matrix dimensions must agree. 
 
% An error results since we need a match for the inner dimensions and with a moments 
reflection one can see that it is not possible to define the product.  
We can further see the distinction between array and matrix operations by using vectors,  
given the  following vectors v1 and v2, namely 
» v1=[1 3 4] 
v1 =     1     3     4 
» v2 =[ 2 3 5] 
v2 =     2     3     5 
 
% then array multiplication v1.*v2 gives 
» v1.*v2 
ans =     2     9    20 
 
 i.e. an element by element multiplication:   
 
if we try matrix multiplication 
» v1*v2 
Error using ══ *   Inner matrix dimensions must agree. 
 
on the other hand if we take the transpose of the 'row vector' v2 to 
we get a column vector as in 
 
» v3=v2' 
v3 =     2 
         3 
         5 
 
% we can now matrix multiply v3 a 1 x 3 to the column vector v1 a 3 x 1 to get a 3 x 3 
matrix ( Inner matrix dimensions do agree.), as follows 
» v3*v1 
ans = 2     6     8 
          3     9    12 
          5    15    20        % by the rules of matrix multiplication. 
 
Here the reverse can be done since we multiply v1 a 1 x 3 to the column vector v3 a 3 x 1 
to get a 1 x 1 matrix ( Inner matrix dimensions do agree.)  as  
» v1*v3 
ans =   31 
 
%Consider the following ARRAY OPERATIONS: 
% these are element by element, study each example with the above vectors)  
» v1.*v2 
ans =     2     9    20 
 
» v2./v1 
ans =    2.0000    1.0000    1.2500 
 
 



» v2.^v1 
ans =     2    27   625 
 
» v1+v2 
ans =     3     6     9 
 
% Many of the MATLAB basic functions are used as array operations. If the functions 
receives an array than the answer is an array with matching dimension, as in 
» sin(v2) 
ans =    0.9093    0.1411   -0.9589 
 
% or as we saw in  graphing 
» t=1:1:5 
t =     1     2     3     4     5 
» y=sin(t) 
y =    0.8415    0.9093    0.1411   -0.7568   -0.9589 
» plot(t,y) 
                     MATRICES AS TWO DIMENSIONAL  SUBSCRIPTED ARRAYS 
 
% Getting back to treating the MATLAB Matrix as two dimensional Arrays 
A =  1     2     3 
        4     5     6 
        7     8     0 
% We can use two subscript variables or numbers to reference the row and 
 column position. The first subscript is the row number and the second the column number.  
As in: 
» A(1,1) =  1 
» A(2,2) =  5 
» A(3,2)+A(2,3) =  14 
% We can use a nested pair of for loops to process all members of a MATRIX (a two 
dimensional array) as in: 
» for i=1:3           % OUTPUT BY ROW 
    for j=1:3 
      A(i,j) 
    end; 
  end; 
ans =     1 
ans =     2 
ans =     3 
ans =     4 
ans =     5 
ans =     6 
ans =     7 
ans =     8 
ans =     0 
% CONSIDER THE FOLLOWING NESTED LOOP OUTPUT BY ROW which illustrates us 
addressing all values of the matrix. 
» for i=1:3 
    for j=1:3 
      fprintf( 'Row  %2.0f Column  %2.0f value = %3.0f\n',i,j,A(i,j)) 
    end; 
  end; 
Row   1 Column   1 value =   1 
Row   1 Column   2 value =   2 
Row   1 Column   3 value =   3 
Row   2 Column   1 value =   4 
Row   2 Column   2 value =   5 
Row   2 Column   3 value =   6 
Row   3 Column   1 value =   7 
Row   3 Column   2 value =   8 
Row   3 Column   3 value =   0 
 



 
% We can use this technique to initialize a two dimensional array as in 
» for i=1:4 
    for j=1:3 
       SUM(i,j) =i 
    end; 
  end; 
SUM =     1     1     1 
                2     2     2 
                3     3     3 
                4     4     4 
% Another illustration of the nested for loop processing is to generating a matrix called the 
identity matrix whose diagonal values are 1 and all other values are 0. A useful Matrix in 
engineering problem solving. 
» for i=1:5 
    for j=1:5 
      if i==j 
        idea(i,j) =1 
      else 
        idea(i,j) =0 
      end 
    end; 
 end 
idea =     1     0     0     0     0 
               0     1     0     0     0 
               0     0     1     0     0 
               0     0     0     1     0 
               0     0     0     0     1 
 
                               SOME OTHER BASIC MATLAB FUNCTIONS AND MATRICES 
The sum() function: 
If we need the total of all elements we can use the sum() function 
% If we use sum(a) and a is a vector as in 
» a=[1 2 3 4 5] 
a =     1     2     3     4     5 
» sum(a) 
ans =    15 
% i.e. We get a scaler sum of all values BUT if A is a MATRIX 
» A=[1 2 3; 4 5 6; 7 8 9] 
           A =   1     2     3 
                   4     5     6 
                   7     8     9 
» s1 = sum(A) =   12    15    18   
% s1 is A VECTOR WHOSE ELEMENTS ARE THE  
                                   SUM OF THE COLUMNS OF THE MATRIX 'A' 
% If we sum this vector, s1, we effectively get the sum of all elements of the original Matrix. 
 
» sum(s1) =    45 
 
% or we could of just used sum() twice to get the total of all elements 
 
» sum(sum(A)) =    45    % Several functions can be used this way! 
 
 
 
 
 
 
 
 
 
 



                                   MATRICES AND SYSTEMS OF SIMULTANEOUS EQUATIONS 
 
Review of SOME Matrix operations 
Given the following matrices 
>> A =[1 2 3;4 5 6;7 8 9] 
A =     1     2     3 
          4     5     6 
          7     8     9 
 
>> B =[2 2 2;3 3 3;1 1 1;] 
B =     2     2     2 
          3     3     3 
          1     1     1 
 
                    ^  MATRIX POWER OPERATION  ^ 
 
>> F = B^2                                   
  F =  12    12    12 
         18    18    18 
           6      6      6 
 
% NOTE THIS IS NOT AN ELEMENT BY ELEMENT FUNCTION LIKE IN THE ARRAY 
OPERATION 
>> F2 = B.^2 
F2 =     4     4     4 
            9     9     9 
            1     1     1 
 
%  BUT MATRIX POWER IS EQUIVALENT TO 
>> F3 = B*B ==B^2 as above 
F3 =    12    12    12 
           18    18    18 
             6     6     6 
 
%                      '   MATRIX TRANSPOSE OPERATION  ' 
>> G = B' 
G =     2     3     1 
           2     3     1 
           2     3     1 
 
 
Above we have  
A =     1     2     3 
          4     5     6 
          7     8     9 
so 
>> G2 =A' 
G2 =     1     4     7 
             2     5     8 
             3     6     9 
% This operation is useful to Transpose a row vector to a column vector 
and is used a great deal. as in 
>> x=[ 1 2 3]' 
x =      1 
           2 
           3 
 
 
 
 
 
 



 
%                       SCALER MULTIPLICATION 
>> A=[1.0 2.2;3.0 4.0;-1.0 0.0] 
A =    1.0000    2.2000 
         3.0000    4.0000 
        -1.0000         0 
>> Y = 4*A 
Y =    4.0000    8.8000 
        12.0000   16.0000 
         -4.0000         0 
 
% NOTE IN THESE LAST ILLUSTRATIONS THE MATRIX DIMENSIONS OF THE 
ANSWER MATCH 
THE ORIGINAL MATRIX DIMENSION OF 3 x 2 AS IN THE CASE ABOVE OF 3 X 3 
  
% CONSIDER THE FACT THAT IN MULTIPLICATIONS THE INNER DIMENSION MUST 
MATCH ELSE THE COMPUTATION WILL NOT BE DONE.  As noted above. For example. 
GIVEN 
 
A =   1.0000    2.2000 
         3.0000    4.0000 
        -1.0000         0 
% AND 
 
b =[4.0 -3.0;2.0 6.0] 
b =     4    -3 
          2     6 
 
>> b * A 
Error using MM * 
Inner matrix dimensions must agree. 
 
% NOTE:  b IS A 2 X 2 AND A IS A 3 X 2 AND INNER VALUES ARE 2 AND 3  
 
>> A * b 
ans =    8.4000   10.2000 
           20.0000   15.0000 
            -4.0000    3.0000 
 
% NOTE:FOR A * b WE HAVE A 3 X 2 AND A 2 X 2 AND BY MATRIX RULES WE GET A 
3 X 2 
 
%                                      DOT (&CROSS) PRODUCT  AND VECTOR MAGNITUDES 
 
% THE DOT PRODUCT  IS AN OPERATION ON VECTORS (MATRICES WITH 1 
COLUMN OR ROW) 
>> V1 =[3.0 1.5 -0.5]' 
V1 =    3.0000 
           1.5000 
          -0.5000 
 
>> V2=[1.0 2.0 3.0]' 
V2 =     1 
            2 
            3 
 
%     THE DOT PRODUCT(also called the SCALAR product) IS JUST THE SUM OF THE 
ARRAY PRODUCT OF THE TWO VECTORS 
>> ARRPROD = V1.*V2 
ARRPOD =    3.0000 
                      3.0000 
                     -1.5000 



DOT (SCALAR) PRODUCT IS THE THE SUM OF THE ARRPOD 
>> sum(ARRPOD) 
ans =    4.5000 
 
%   I.E. WE ARE SUMMING THE PRODUCTS OF THE VECTOR COMPONENTS BY THE 
USUAL     DOT PRODUCT DEFINITION 
MATLAB has the dot() function that does the same thing ie. 
>> dot(V1,V2) 
ans =    4.5000 
 
MATLAB also has a simple way to do the cross product whose answer is a vector 
perpendicular to the two original vectors. 
>> C=cross(V1,V2) 
C =    5.5000   -9.5000    4.5000 
If you recall from math classes the dot product of vectors perpendicular to each other is 
zero! This is easily shown with the two vectors V1 and V2 with C which is perpendicular to 
both. Taking the dot product of C with V1 and V2 verifies this point 
>> dot(C,V1) 
ans =     0 
 
>> dot (C,V2) 
ans =     0 
 
%  THE MAGNITUDE OF A VECTOR IS JUST THE SQUARE ROOT OF THE DOT 
PRODUCT OF ITSELF as we have already pointed out. For examples: 
>>MAG_V1 = sqrt(sum(V1.*V1)) 
MAG_V1 =    3.3912 
>>  MAG_V2 = sqrt(sum(V2.*V2)) 
MAG_V2 =    3.7417 
 
Of course the magnitude can be found with the MATLAB function ‘norm” 
As illustrated as follows. 
>>norm(V1) 
ans =     3.3912  
>> norm(V2) 
ans =    3.7417 
Both agree with MAG_V1 and MAG_V2 above. 
 
%FOR MORE ACCURATE ANSWER WE CAN ALWAYS.. 
>> format long 
 
MAG_V1 = sqrt(sum(V1.*V1)) 
MAG_V1 =   3.39116499156263 
 
% AS A FURTHER APPLICATION 
 
% We again review the ANGLE BETWEEN TWO VECTORS 
% IT IS NOT DIFFICULT TO SEE THAT IF phi IS THE ANGLE BETWEEN V1 AND V2 
THEN 
 >> cos_phi = sum(V1.*V2)/(sqrt(sum(V1.*V1)).*sqrt(sum(V2.*V2))) 
cos_phi =    0.3546 
 
% The function acos() gives us the angle 
>> phi = acos(.3546) 
phi =    1.2083 
%  in radians 
 
% NOTE: WE CAN THEN FIND THE ANGLE WITH A FORMULA LIKE 
% angle = acos( sum(V1.*V2)/(norm(V1).*norm(V2) ) 
 
>>acos(dot(V1, V2) / (norm(V1) * norm(V2))) 
ans =   1.2083    which agrees with above  



%                                   SIMULTANEOUS EQUATIONS: 
 
% MATLAB provides a large variety of matrix and function operations to solve  
simultaneous equations with n variables and n equations 
The problem for three unknowns x,y,z can be stated as 
given; 
 
    a11x + a12y +a13z = b1 
    a21x + a22y +a23z = b2 
    a31x + a32y +a33z = b3 
 
% It is usually assumed we know all of the coefficients, a, as well as  
the values of the b's. We have three equations to solve three unknowns in this  illustrative 
case. 
In other words, what are the values of x,y and z that simultaneously solve all three of the 
above equations.  
 
We can interpret each of the above equations as planes in space. If the three 
planes intersect at a common (x,y,z) point  then the common point values  
of x,y and z are the solution to the problem. 
It could happen that two of the planes are the same.If two planes intersect 
they form a line (of values) which results in an infinite number of solutions 
The is no solution if all three planes are parallel. 
 
           THE MATLAB APPROACH TO SIMULTANEOUS EQUATION 
 
%CONSIDER THE FOLLOWING LINEAR EQUATIONS 
 
           2x + 3y -  z =  1 
           3x + 5y + 2z =  8 
            x - 2y - 3z = -1 
 
% THIS PROBLEM IS CONVERTED TO MATRIX FORM BY IDENTIFYING THE 
COEFFICIENTS OF THE UNKNOWN AS A MATRIX CALLED, A, AND THE VALUES OF 
x, y AND z AS A COLUMN VECTOR CALLED, U, AND THE CONSTANT TERMS ON THE 
RIGHT A COLUMN VECTOR CALLED B AS FOLLOWS 
 
>> A = [2 3 -1;3 5 2; 1 -2 -3] 
A =     2     3    -1 
          3     5     2 
          1    -2    -3 
 
>> B = [1 8 -1]' 
B =     1 
          8 
         -1 
 
U =     x 
          y 
          z 
 
%                                 THE LINEAR EQUATIONS REDUCE TO THE MATRIX EQUATION 
 
%                 AU = B 
 
% ONE CAN CHECK THIS LAST EQUATION BY DOING THE MATRIX MULTIPLICATION 
AND YOU WILL GET THE MATRIX EQUIVALENT TO THE ABOVE LINEAR EQUATIONS  
 
THE SIMPLEST AND THE BEST SOLUTION OF THE MATRIX EQUATION   AU = B  
IN MATLAB IS TO USE THE LEFT DIVISION OPERATION  DEFINED AS 
 
%               U = A\B  



 
% IF WE CARRY THIS OUT WE GET THE U VECTOR WHICH IS THE x,y AND z 
SOLUTION 
 
>> U = A\B 
U =     3 
          -1 
           2 
 
% NAMELY x = 3  y = -1 AND z =2 :  extremely easy way to solve such a problem!         
% To solve linear equations of more variables is still done by the simple  
application of the left division operation AFTER ASSIGNING THE APPROPRIATE 
VECTORS AND MATRICES. 
 
 
>> help \ 
 
\     Left division. 
      A\B is the matrix division of A into B, which is roughly the 
      same as INV(A)*B , except it is computed in a different way. 
      If A is an N-by-N matrix and B is a column vector with N 
      components, or a matrix with several such columns, then 
      X = A\B is the solution to the equation A*X = B computed by 
      Gaussian elimination. A warning message is printed if A is 
      badly scaled or nearly singular....   
   
% As you see from the MATLAB definition left division combines a number of 
techniques to get the solutions. In general basic solutions to simultaneous equations are 
obtain by Cramer's rule or Gauss Elimination or Gauss-Seidel methods. Here in MATLAB 
the left division operator is basically a Gaussian elimination technique that is very simple to 
set up. A great deal of basic coding is not needed here. 
 
 
% Note that in the definition above left division is equivalent to inv(A)*B 
inv(A) is the inverse Matrix of the original Matrix. This is not a good way to solve the 
system IN MATLAB and should be avoided. 
% Additional illustration 
We  set up as AU =B problem as follows 
 
>> A =[7 -4 0;-4 15 -6;0 -6 8] 
A =     7    -4     0 
         -4    15    -6 
           0    -6     8 
 
>>B = [30 0 40]' 
B =    30 
           0 
         40 
 and the solution is  U = A\B 
>> U = A\D 
U =    7.5652 
         5.7391 
         9.3043 
More precision is seen with 
>> format long 
U =   7.56521739130435 
         5.73913043478261 
         9.30434782608696 
% CHECKING THE SOLUTION 
 How good is the solution : we can Check U since AU should = B 
>> A*U 
ans =   30.0000 



             -0.0000 
            40.0000 
 
% WE CONCLUDE LEFT DIVISION GIVES US VERY GOOD SOLUTIONS 
% The CHECK tells us how good our solution is! Since MATLAB used Double Precision in 
all calculations our answers were very good because "roundoff" errors are reduced. 
 
 
 
 
 
 
 
 
% PROBLEMS IN GETTING A SOLUTION 
If two equations are in the same plane as in this example (one line is a  
simple multiple of another) 
CONSIDER 
>> A = [2 3 -1;4 6 -2;1 -2 -3] 
A =     2     3    -1 
          4     6    -2 
          1    -2    -3 
 
B =[1 8 -1]' 
% Attempting to get a solution results in 
>> U=A\B 
Warning: Matrix is singular to working precision. 
U =     ∞ 
          ∞ 
          ∞          That is there are an infinite number of solutions along the line of  intersection 
formed by the two non-parallel planes 
 
              EIGENVECTORS AND EIGENVALUES (very useful engineering concepts) 
 
% Once we have a linear equation system and define a matrix of the coefficients of our 
unknowns, A below, it also occurs in many scientific and engineering applications to  FIND 
VECTORS X AND SCALARS E THAT SATISFY 
 
%                            AX=XE 
 
THIS IS KNOWN AS AN EIGENVALUE PROBLEM. 
                                        A1  A2  A3 
                               A =   A4  A5   A6     
                                        A7  A8   A9     
IN the three equation CASE THERE WOULD BE THREE SCALER EIGENVALUES  
FOR THREE EIGENVECTORS( here A is a 3 x 3 square matrix) with the original problem 
and E is a 3 x 3 diagonal matrix with the eigenvalues in the diagonal or all other members 
are zero. And X is a 3 x 3 matrix containing three columns which represent 3 eigenvectors.    
That is we would need to get three separate vectors FOR THREE CORRESPONDING 
SCALARS E1,E2 AND E3 (THE EIGENVALUES) THAT WOULD SATISFY THE ABOVE 
EQUATION. WE WOULD HAVE THREE SEPARATE EQUATIONS FOR EACH 
Eigenvalue and corresponding Eigenvector as follows  
 
                                         
% MATLAB HAS THE FUNCTION eig TO SATISFY THESE REQUIREMENT 
>> help eig 
EIG(A) is a vector containing the eigenvalues (SCALARS) of a square matrix A. 
 
[XV,D] = EIG(A) produces a diagonal matrix D of eigenvalues and a full matrix XV whose 
columns are the corresponding eigenvectors so that A*XV = XV*D.... 
 
 



Example 1 
 
A=[1 2 3; 4 5 6 ;7 8 9] 
 
A =     1     2     3 
           4     5     6 
           7     8     9 
 
>> eig(A)   gives just the 3 eigenvalues 
 
ans =   16.1168 
             -1.1168 
             -0.0000 
 
>> [XV,E]=eig(A) 
 
XV =   -0.2320   -0.7858    0.4082     each column represents a vector the eigenvectors 
           -0.5253   -0.0868   -0.8165 
           -0.8187    0.6123    0.4082 
 
 
E =   16.1168         0         0     E is a diagonal matrix containing the eigenvalues. 
                0   -1.1168         0 
                     0         0   -0.0000 
 
Since A*XV=XV*E  we can check this as follows and see that they match  
 
>> A*XV= 
 
   -3.7386    0.8776   -0.0000 
   -8.4665    0.0969   -0.0000 
  -13.1944   -0.6839         0 
 
>> XV*E= 
 
   -3.7386    0.8776   -0.0000 
   -8.4665    0.0969     0.0000 
  -13.1944   -0.6839   -0.0000 
 
%EIGENVECTOR - EIGENVALUE EXAMPLE 2 
GIVEN MATRIX A AS 
 
>> A=[2 3 -1;3 5 2;1 -2 -3] 
A =     2     3    -1 
          3     5     2 
          1    -2    -3 
 
% WE CAN SEE THE EIGENVALUES WITH eig(A) AS  
 
>> eig(A) 
ans =    6.7195           
            -1.3598 + 1.1938i 
            -1.3598 - 1.1938i 
 
Each value of the resulting vector is one of the scalar numbers 
that satisfy AX=EX  
 
%IT IS BETTER TO USE THE [XV,E] =eig(A) WHICH GIVES US BOTH THE VECTORS 
AND SCALAR VALUES 
 
 
 



>> [XV,E]=eig(A) 
XV =  -0.5500  -0.5341 - 0.1335i  -0.5341 + 0.1335i 
          -0.8274   0.4415 + 0.0445i   0.4415 - 0.0445i 
           0.1137  -0.6293 + 0.3224i  -0.6293 - 0.3224i 
 
THE THREE COLUMNS OF XV CORRESPOND TO THE THREE EIGENVECTORS 
XEV1,XEV2 AND  XEV3  WE NOTE HERE THAT TWO OF THEM ARE IMAGINARY  
 
THE VALUE OF E IS 
E =     6.7195                  0                    0           
           0            -1.3598 + 1.1938i        0           
           0                  0            -1.3598 - 1.1938i 
 
Here the scalar EIGENVALUES are the diagonal elements of D  
 
% CHECKING THE RESULT 
The MATLAB definition suggest a check  A*XV = XV*E 
>>A*XV 
ans =  -3.6958             0.8857 - 0.4560i   0.8857 + 0.4560i 
          -5.5596            -0.6534 + 0.4666i  -0.6534 - 0.4666i 
           0.7638             0.4709 - 1.1896i   0.4709 + 1.1896i 
 
>> XV*E 
ans =  -3.6958             0.8857 - 0.4560i   0.8857 + 0.4560i 
          -5.5596            -0.6534 + 0.4666i  -0.6534 - 0.4666i 
           0.7638             0.4709 - 1.1896i   0.4709 + 1.1896i 
 
Which we see gives us equivalent answers. 
 
% We can see the problem from the original definition AX = EX by focusing  
on the real solution. 
FROM ABOVE IT SHOULD BE TRUE THAT   
                A*XEV1 =E1*XEV1 
 
THE REAL EIGENVECTOR IS THE FIRST COLUMN OF XV 
 
>> XEV1 =XV(1:3)'    %Remember MATLAB references matrix by column here. 
XEV1 =   -0.5500      i.e. when we use one subscript variable for index 
               -0.8274 
                0.1137 
 
% THE REAL EIGENVALUE IS THE FIRST DIAGONAL ELEMENT OF E 
>> E1 = E(1) 
     E1 =    6.7195 
 
% NOW WE CHECK IF A*XEV1 = E1*XEV1 
>> A*XEV1 
ans =   -3.6958 
           -5.5596 
            0.7638 
 
>> E1*XEV1 
ans =   -3.6958 
            -5.5596 
             0.7638 
 
 And we see that the eigenvector XVE1 and eigenvalue E1 satisfy the original DEFINITION 
OF THE concept.   
 
% By the way the MATLAB function 'eig' solves for vectors that have a  
magnitude of 1.  In other words the eigenvectors are unit vectors 
we can prove this for our case by using the dot product definition above 



of the eigenvector XV and OR THE NORM FUNCTION TO get the magnitude OF THE 
% VECTORS. NAMELY 
>> magXEV1 =sqrt(sum(XEV1.*XEV1)) 
magE =     1 
or 
>> norm(XEV1) 
ans =    1.0000 
 
% WHICH SHOWS THE EIGENVECTORS ARE UNIT VECTORS. 
 
                         
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 LABORATORY TASKS (print m files and outputs and any data files created. Number 
all tasks)  
 
 
46: Given A = [1 -2  9;3  7 -6; 5 -8 0] 
      find 

1. B=A’ ? 
2. A*B 
3. B*A    does 2 and 3 equal each other?  Most math 2*3=3*2 but not here! 
4. The determinant of B=? 

 
47: write a short m file that will load up a matrix G below with the following values one at a 
time and uses a double for loop for each member. All members get summed. Once loaded 
the program then prints out each value using a double for loop which matches the following 
,also the final sum of all members is printed(done in the loops). 
G=      6 4 9 5 
           8 2 3 6 
           9 3 2 1 
The program also produces the sum(sum(G)) to check it’s the same as the above sum of 
all members 
 
 
48:Given the vectors   V1 =[9 -2 4] and V2=[ 6 5 3] Show formulas used for the following 

1. Calculate the magnitude of each vector two ways.  
2.  Calculate the dot product of V1 and V2 two ways 
3.  Calculate the angle between the vectors with two formulas          
 

 
49.   See section on importing large amounts of data… for this NEXT problem. 
 
The following laboratory task will drill you on the above MATRIX principles  and introduce 
you to sending a programs output to a file. 
   
1.Create a matrix called rain that is a 3 x 4 matrix with the following data. Your program 
should ask for one of the values and assign it to the proper position. Use a double for loop 
to create the matrix rain. 
2.0 3.1 2.8 0.7 1.1 0.0 1.1 0.4 0.0 0.0 3.2 2.1 
 
 
 
DO NOT TRANSFORM THE MATRIX INTO A ONE DIMENSIONAL VECTOR! 
The program (m file) should also do the following after loading the matrix. 
 
2. use sum() to get the total of all values 
 
3. Use nested for loops to obtain the sum and compare with the function answer! 
 
4. use the size() to get the total count of values ie. m x n 
 
5. express the average  value 'ave' using the sum() and total count 
 
6. Use mean() to get the average value and compare with the above average value.  
 
7. Use min() and max() to get the minimum and maximum values of the rainfall data. 
 
8. use nested loops to determine the number of days with greater than average 
 rainfall as well as the day number this took place. Output this information together. 
 
9. THE ENTIRE OUTPUT SHOULD BE SENT TO A FILE WITH THE "fprintf()' COMMAND 
 
 SEE THE DEFINITION IN THE help fprintf. Use the Editor to add text to make a report 



out of the file and print the file on paper from the Editor.   
50.  Consider the linear equations 
   4x -  y +  z - 2w =   4 
    x + 6y + 2z -  w =   9 
   -x - 2y + 5z - 3w =   2 
   2x + 3y +  z +  w = -12 
 
1. Find the values of x,y,z,w that satisfy these 
2. Check the answer  
3. Find the eigenvectors and eigenvalues 
4. Check answers FOR ALL CASES (REAL EIGENVALUES ONLY) 
 


