
 
                                                     ROOTS OF EQUATIONS 
 
% Many engineering problems require the finding of the x’s for a function f(x) such   that f(x)=0. 
 For example; if we want to find the solution to  x =sin(x)  , we transform this situation to f(x) = x-
sin(x)  which now reads x-sin(x) =0 and then use various techniques to solve for x to obtain f(x)=0.    
This concept is also used to find the roots of polynomials i.e. what are the values of x that make the 
polynomial 
  3x5 - 6x3 + 12x2 - 5x + 89 = 0.  You are already familiar with solving the quadratic equation. ax2 + 
bx + c = 0. 
 
                                              NOTE:  
There are a number of efficient numerical techniques used in programming to solve f(x) = 0. Simple 
techniques called Bisection or False Position, as well as, more sophisticated Newton-Raphson and 
Secant methods are techniques you may encounter in your careers. 
 
 
                        ROOTS OF POLYNOMIAL EQUATIONS 
 
% One set of problems of finding x for f(x)=0 is when f(x) is a polynomial 
  MATLAB has several functions to handle this case, we will consider, roots(),  and poly() which act 
on vectors covered here (also matrices, later) defined in the  following  FUNCTION definitions: 
 
» help roots 
 
 ROOTS Find polynomial roots. ROOTS(C) computes the roots of the 
  polynomial whose coefficients are the elements of the 
  vector C. If C has N+1 components, the polynomial is 
  C(1)*X^N + ... + C(N)*X + C(N+1). See ROOTS1 and POL 
% FOR EXAMPLE  for y=f(x) = x3 -5x2 +2x +8 =0   
We define a vector containing the coeficients of the polynomial, C, as 
 
» C =[1 -5 2 8]; 
 
% and obtain the roots with roots() or roots1() functions 
  as follows 
» roots(C) 
ans =    4.0000 
             2.0000 
            -1.0000 
 
% It is convenient to store the answer in a vector for use with our next function poy()  if we wanted to 
check out if these are really the roots, as in 
 
» V = roots(C) 
V =    4.0000 
          2.0000 
         -1.0000 
  
% Once roots have been determined by the above functions for polynomials we can check out the 
resulting roots to see that they are the solutions we seek by  using the function poly() which 
regenerates the polynomial. 
 
» help poly 
 POLY Characteristic polynomial. 
  ...If V is a vector, POLY(V) is a vector whose elements are 
  the coefficients of the polynomial whose roots are the 
  elements of V . For vectors, ROOTS and POLY are inverse 
  functions of each other, up to ordering, scaling, and 
  roundoff error. 
 
 
 



 
Of course, the alternative way would be to substitute the values of each x into the original  f(x) and 
see if the answer is zero!  
% Checking the answer, we just did, with 'poly' becomes easy with the vector answer to 
roots(),namely, V above.  
 
» poly(V) 
ans =    1.0000   -5.0000    2.0000    8.0000 
 
%Thus we obtained our original polynomial and the corresponding coefficients giving us confidence 
in our answer f(x) = x3 -5x2 +2x +8 =0    
I.E. we used the roots obtained with roots() to obtain the original coefficients with poly() 
 
Alternatively we could just  let x = one of roots and evaluate y as in.. 
>> x=4; 
>> y=x^3 -5*x^2 +2*x +8 
y =     0 
 
An another example for the roots()-poly() game plan. 
Let us solve a fifth order polynomial f(x)=x5 - 3x4 - 11x3 + 27x2 + 10x - 24 = 0 
 
» C =[1 -3 -11 +27 +10 -24] 
 
% The root solution is easily generated with 
 
» z = roots(C) 
z =    4.0000 
        -3.0000 
         2.0000 
         1.0000 
        -1.0000 
 
% TO CHECK IF THIS IS THE RIGHT ANSWER FOR OUR POLYNOMIAL WHICH AT THIS POINT 
IS REDUNDANT AND JUST BEING DONE TO MAKE A POINT HOW ACCURATE THESE 
FUNCTIONS ARE.  
» p = poly(z) 
 p =    1.0000   -3.0000  -11.0000   27.0000   10.0000  -24.0000 
 
% SHOWING 100% AGREEMENT WITH OUR ORIGINAL COEFFICIENTS FOR THE 
POLYNOMIAL 
 
% TO OBSERVE A FUNCTIONS BEHAVIOR AND VISUALLY SEE THE ROOT AREAS WE CAN 
ALWAYS SET UP A FUNCTION FILE 
% Given the polynomial function f(x)=x5 - 3x4 - 11x3 + 27x2 + 10x - 24 
We set up function file for it which makes it easier to use in other programs. 
 
» type p5ex1 
function y = p5ex1(x) 
y = x.^5 -3*x.^4 -11* x.^3 +27*x.^2 +10*x -24; 
 
We can observe the roots by studying the graph, as in 
» x=-3.2:.01:4.1; 
» y2=p5ex1(x); 
>>plot(x,p5ex1(x)) 
>> grid 
% with a few added embellishments we get and “see” the five  zero’s easily 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
% ADDITIONAL POLYNOMIAL EXAMPLES 
 
% MULTIPLE IDENTICAL ROOT EXAMPLE 
 F(x) f(x)=x5 - 4x4 - 9x3 + 32x2 + 28x - 48 
» C = [1 -4 -9 +32 +28 -48] 
C =     1    -4    -9    32    28   -48 
 
» r = roots(C) 
r =   4.0000 
       3.0000 
      -2.0000 
      -2.0000 
       1.0000 
 
% We note the vector of the roots has two equal values  
 
» %Though we could check our roots with poly() which shows us 
 
» A =poly(r) 
A =    1.0000   -4.0000   -9.0000   32.0000   28.0000  -48.0000 
 
poly() is useful if we have roots we want and are looking for an equation to cover those roots. 
 
Plots are always useful to visualize and help us understand our answers as before: 
Check out.  
>>  x=-4:.01:5; 
>> y=x.^5 - 4*x.^4 - 9*x.^3 + 32*x.^2 + 28*x - 48; 
>> plot(x,y) 
>> grid 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We note the double root at -2 is uniquely an extrema point (local maximum) slope = 0 just at the root 
value f(x) =0 and all the roots are real. 
 
% A MORE COMPLEX EXAMPLE f(x)=x5 +3x4 - 4x3 -26x2 -40x – 24  
» C = [1 3 -4 -26 - 40 -24] 
 
» r =roots(C) 
   3.0000 + 0.0000i 
  -2.0000 + 0.0000i 
  -2.0000 + 0.0000i 
  -1.0000 + 1.0000i 
  -1.0000 - 1.0000i 
% clearly all roots look imaginary with the last two clear what they are, to probe further the first three 
complex numbers we use format long. 
 
 
 
>> format long 
>> r 
r = 
  3.000000000000000 + 0.000000000000000i 
 -2.000000084084592 + 0.000000000000000i 
 -1.999999915915403 + 0.000000000000000i 
 -1.000000000000002 + 1.000000000000001i 
 -1.000000000000002 -  1.000000000000001i 
 
Clearly the first three have ambiguous imaginary parts of the complex number. And can be 
considered real to the accuracy of the routine used behind the scenes. To be sure we plot the 
function below. 
Here it is also prudent to check the results with poly(), to be sure the mathematical technique being 
used by function is behaving properly. 
 
% THE CHECKING COMES WITH using the poly() function which in format long yields 
>> A=poly(r) 
 
A =  Columns 1 through 2 
   1.000000000000000   2.999999999999997 
  Columns 3 through 4 
  -4.000000000000004 -25.999999999999975 



  Columns 5 through 6 
 -39.999999999999979 -23.999999999999957 
 
Close numbers but not exactly the same coefficients if we look at this numbers in format short we 
see to that accuracy we recover the coefficients of the original polynomial. 
 
>> format short 
>> A 
A =  Columns 1 through 5 
    1.0000    3.0000   -4.0000  -26.0000  -40.0000 
  Column 6 
  -24.0000 
 
Here its prudent to plot the function to get a sense of what is happening. 
>> x=-3:.01:4; 
>>y5=x.^5 +3*x.^4 - 4*x.^3 -26*x.^2 -40*x – 24; 
>>plot(x,y5) 
>>grid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The root near x=3 is clearly real and the two near -2 are for both short and long accuracy above also 
real  since the imaginary part is clearly zero and there are two additional imaginary roots.  
The problem for this techniques is clearly seen on the graph in the negative x axis.   
 
Just because roots can be complex does not mean we would have the same messy answers as 
above. Consider the following  
» C=[1 -9 35  -65 64 -26] 
C =     1    -9    35   -65    64   -26 
 
» r =roots(C) 
r =  3.0000 +  2.0000i 
      3.0000  -  2.0000i 
      1.0000 +  1.0000i 
      1.0000  -  1.0000i 
      1.0000           
% THE CHECK 
>> A= poly(r) 
A =    1.0000   -9.0000   35.0000  -65.0000   64.0000  -26.0000 
.%the graph would show a root at 1,(almost asymptotically approach from both sides and now other 
crossing of the x= 0 axis. The latter is why 4 complex roots can be found.  
 
 % SIMPLE TECHNIQUES OF 'BISECTION' OR 'FALSE- POSITION' OR MORE SOPHISTICATED 
NEWTON- RAPHSON METHOD OR SECANT METHODS YIELD US GOOD ANSWERS. WE 
CAN,ALSO, FIND ROOTS ONE AT A TIME  WITH MATLABS GENERAL FIND A ROOT 
FUNCTION CALLED fzero() BUT WE WILL USE THIS FUNCTION TO FIND ROOTS OF 
NON=POLYNOMIAL EQUATIONS below. 
 



                                   USING THE FUNCTION TO CHECK THE ROOTS    
 
% AS YOU SAW ABOVE A VERY GOOD CHECK ON THE VALIDITY OF THE ROOT(S) YOU FIND 
IS TO SUBSTITUTE A ROOT INTO THE FUNCTION (POLYNOMIAL OR ANY OTHER) TO SEE IF 
THE VALUE OF F(root)  IS NEAR ZERO TO WITHIN THE TOLERANCE OF THE FUNCTION YOU 
ARE USING (FOR MOST PURPOSES STANDARD VALUES SHOULD BE OK) 
IT IS EASIEST TO SET UP A FUNCTION M-FILE TO UNDERTAKE THIS CHECK WHICH 
IS ILLUSTRATED BY THE EXAMPLES TO FOLLOW IN SEVERAL WAYS. 
 
 
%CONSIDER This specific  4th order POLYNOMIAL DEFINED BY THE FOLLOWING FUNCTION 
M-FILE 
» type poly458 
 function y =poly458(x)  
 a0=0; 
 a1=1; 
 a2=-2.125; 
 a3=-25.0; 
 a4=53.125; 
 y =  a0*x.^4 + a1* x.^3 +a2* x.^2+ a3*x +a4 
 
% WE NOTE THE a COEFFICIENTS ARE LOCAL VARIABLES TO THE FUNCTION WHICH 
MEANS THEY ARE NOT KNOWN OUTSIDE THE FUNCTION.AND THAT MEANS 
WE HAVE TO REDEFINE A Coefficient VECTOR, C, FOR poly458() AS 
» C =[0 1 -2.125 -25 53.125] 
C =         0    1.0000   -2.1250  -25.0000   53.1250 
» root=roots(C) 
root = -5.0000 
           5.0000 
           2.1250 
% NOW AS AN ADDITIONAL CHECK TO USING poly(), WHEN THE FUNCITION IS A 
POLYNOMIAL, WE CHECK f(root)=0 WHICH CAN BE USED EVEN WHEN WE ARE STUDYING 
THE ROOTS OF NON-POLYNOMIAL EQUATIONS (see below) 
» poly458(5) 
ans =     0 
» poly458(-5) 
ans =     0 
 
» poly458(2.1251) 
ans=   -0.0020                   %ILLUSTRATED VALUE IS JUST A LITTLE OFF ROOT 
                          
» poly458(2.1250) 
ans =     0 
  
% WE CONCLUDE THESE ROOTS ARE VERY GOOD ANSWERS! 
 
% A GOOD PROGRAMING STRATEGY FOR USE IN OTHER PROGRAMS FOR POLYNOMIALS  
is to set up a general function to handle a whole family of functions, AS ILLUSTRATED IN THE 
NEXT FUNCTION M-FILE. Where we pass all the coefficients and the value of x to the function 
 
» type poly4 
 function y =poly4(a0,a1,a2,a3,a4,x)  
 y =  a0*x.^4 + a1* x.^3 +a2* x.^2+ a3*x +a4; 
% Remember this is for all 4th order polynomial and lower if a0 =0 we get a third order or a0=0 and 
a1=0 we get a quadratic etc.  
% The “a” variables are the coefficients and x is the vector range to pass to the function  
  
 
 
 
 
 
 



% THAT IS WE PASS THE COEFFICIENTS AS ARGUMENTS (function variables are local) 
%AN INTERACTIVE APPROACH AFTER WE HAVE DEFINED THE ABOVE FUNCTION M-FILE IS 
» a0= 3 
» a1= -12.4 
» a2= -26.290 
» a3= 29.766 
» a4= 0 
 
» C=[a0 a1 a2 a3 a4] 
C =    3.0000  -12.4000  -26.2900   29.7660         0 
Format long will be needed here for the best answers  
» root=roots(C) 
Root=                                0 
            5.413551255911684 
           -2.137622725179635 
            0.857404802601285 
 
» >> poly4(a0,a1,a2,a3,a4, 5.413551255911684) 
The value should be? 
 
Since the quadratic equation comes up often we can use poly4() as noted before by setting the first 
two coefficients to zero. 
  
% USING THE COEFICIENTS THAT MIGHT BE USED IN THE ABOVE GENERAL M-FILE FOR A 
QUADRATIC POLYNOMIAL FOLLOWS 
» a0=0;a1=0;a2=1;a3=2;a4=10; 
» C=[a0 a1 a2 a3 a4] 
C =     0     0     1     2    10 
» root=roots(C) 
root =  -1.0000 + 3.0000i 
        -1.0000 - 3.0000i 
 
% ILLUSTRATING A THIRD ORDER POLYNOMIAL WITH THE GENERAL COEFFICIENTS 
» a0=0;a1=1;a2=-2.125;a3=-25;a4=53.125; 
» C=[a0 a1 a2 a3 a4] 
C =    0    1.0000   -2.1250  -25.0000   53.1250 
» root=roots(C) 
root =    5.0000 
         -5.0000 
          2.1250 
 
% AN ADDITIONAL QUADRATIC EQUATION 
» a0=0;a1=0;a2=1;a3=14;a4=3; 
» C=[a0 a1 a2 a3 a4] 
C =     0     0     1    14     3 
» root=roots(C) 
root =  -13.7823 
         -0.2177 
 
% ANOTHER QUADRATIC 
» a0=0;a1=0;a2=1.234;a3=-1.2;a4=10.44; 
» C=[a0 a1 a2 a3 a4] 
C =         0         0    1.2340   -1.2000   10.4400 
» root=roots(C) 
root =   0.4862 + 2.8677i 
         0.4862 - 2.8677i 
 
% A LINEAR CASE 
» a0=0;a1=0;a2=0;a3=3;a4=-2.5; 
» C=[a0 a1 a2 a3 a4] 
C =         0         0         0    3.0000   -2.5000 
» root=roots(C) 
root =    0.8333 



                         
 
                            NON-POLYNOMIAL FUNCTIONS AND THE  USE OF  fzero() 
 
 % MATLABS GENERAL FUNCTION TO FIND A ROOT IS BASED ON ONE FUNCTION CALLED 
fzero(). fzero() can be used for all functions including polynomials but it 
only finds one root at a time after you guess at a near solution. So for polynomials the above 
techniques are in general superior. 
>> help fzero 
    fzero   As a Single-variable nonlinear zero finding function.  
    X = fzero(FUN,X0) tries to find a zero of the function FUN near X0,  
    if X0 is a scalar.  It first finds an interval containing X0 where the  
    function values of the interval endpoints differ in sign, then searches  
    that interval for a zero.  FUN is a function handle.  FUN accepts real  
    scalar input X and returns a real scalar function value FUN, evaluated  
    at X. The value X returned by fzero is near a point where FUN changes  
    sign (if FUN is continuous), or NaN if the search fails. 
    
     The key here for your understanding in the techniques is that fzero looks for an interval 
     containing a sign change for FUN and  containing X0. X0 is a guess at the value. 
 
   %EAMPLE in the range   0<x<pi/2    solve     x=cos(x)   ? 
  % Thus we explore f(x)=0=cos(x)-x=0      
% SINCE HERE WE MUST SUPPLY A GUESS ‘X’  NEAR THE ROOT, IT IS BEST TO PLOT THE 
FUNCTION  FIRST AND FIND THEVALUES FROM THE GRAPH THAT ARE NEAR THE ROOT. 
In other words for this example we are looking for values of x that make f(x) change sign! If we see 
none then we know there is no real root in the equation we have set up. 
 
% Setting up the graph with very fine interval and a few embellishments to look for  close 
values to a root. 
>> x=0:.001:pi/2; 
>> y=cos(x)-x; 
>> plot(x,y) 
>> grid 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

We see from the graph that a root lies between 0.6 and 0.8  
So to use fzero we set up a function m file for our function. 
 
%The last curve suggest a root near 0.6 which we will use as our Guess in fzero 
% WE CONSTRUCT the M-FILE called fta.m 
 
» type fta 
function y =fta(x) 
y = cos(x)-x; 
 
>> root=fzero('fta',0.6) 
root =    0.7391 
 
 



The solution in this case is very robust and you have a wide range of values to pick from to 
converge to the root. For example  
>> root=fzero('fta',0.8) 
root =    0.7391 
 
>> root=fzero('fta',1.4) 
root =    0.7391 
 
Is the function really zero at this root value 
>> z=fta(root) 
z =     0 
actually in memory is a more precise answer which was used to evaluate the function at the root 
>> format long 
>> root=fzero('fta',1.4) 
root =   0.739085133215161 
>> z=fta(root) 
z =     0 
 
 
 
 
%                                                       LABORATORY TASKS 
 
38(5PTS)  To  SOLVE   Y = X5  + 3.1 X4  -4 X3  -25 X2 - 39 X - 25.234 
      1.  SET UP A GENERAL FUNCTION FOR A 5TH ORDER POLYNOMIAL (M-FILE) as above 
      2.  SET UP VECTOR  WITH PROPER COEFFICIENTS FOR THIS POLYNOMIAL  (like above) 
      3.   USE FUNCTION roots()  
      4. Check answers with poly()  TO GET BACK THE COEFFICIENTS USED IN ROOTS and 
'values of function' at  the various roots(ARE THEY GOOD) BY CALLING ON YOUR GENERAL 5TH 
ORDER M FILE!    
      5. Plot the function as stated in above, over an appropriate interval that covers all roots. USE 
FINE DIVISON OF INTERVAL. Mark the roots on the graph. 
 
39(3 PTS). use the function m file you setup in 38 and find the roots with checks using the m file 
function for the  Quadratic y= 3x2 + 7x -4  graph the solution over an appropriate interval that covers 
the roots and mark the roots  
 
 
 40(5 PTS).    SOLVE  Y=  SIN(X) * COS(X/2) FOR       - 7 < X < 7  USE FINE INTERVAL 
       1. SET UP FUNCTION(M-FILE) 
       2. PLOT THE FUNCTION OVER THE RANGE WITH A GRID TO HELP FIND GUESS VALUES 
Mark them on the graph. 
       3  USE fzero() AND FIND ALL ROOTS,ONE AT A TIME, OVER THE RANGE that you can. 
       4.  CHECK EACH ROOT (HOW GOOD ARE THE ROOTS -COMMENT ON THEM see below) 
        5.. Is X = pi a root?...prove it. Does 'fzero' give you an answer.  
             Why or Why NOT! EXPLAIN! 
 
 


