
 
 
 
                 NUMERICAL INTEGRATION AND FUNCTION FUNCTIONS 
  
   The arguments of functions previously considered had constants, or vector or matrix 
variables as arguments. In this section we will see how to set up a function to process 
another function as one of its arguments, as well as, explore the integration process with a 
computer.  
 
% You should recall basic numerical integration concepts including simple rectangular 
approximations, as well as, the trapezoidal rule. The next function will use this rule to 
calculate the definite integration of any well behaved function. 
NOTE: Any well behaved function means you do not have to memorize the indefinite 
integral of a function like the integral of cos() is sin() etc or look in ancient texts for worked 
out integrals of exotic function which was done a great deal in the 19th century. 
 Let’s review the Trapezoidal rule, study the figures below to the left . 
Remember integral = area under the curve. We want the area from x = a to x = b in this 
case.  We have divided the wanted area into 3 parts. So the interval between the x values is 
simple ∆x=(b-a)/3 . Each area is a rectangle plus triangle we call the combination a trapezoid. 
                                                                                   A magnified view of two sections is below.  
 
Area = area rectangle +area of triangle which becomes for the magnified view 
Area =  area rect + area of triabgle + next rect etc 
Area= ∆X*f(x1)+1/2 ∆X*(f(xo) - f(x1))+ ∆X*f(x2)+ 1/2 ∆X*(f(x1) - f(x2)) ∆X*f(x3)+ 1/2 ∆X*(f(x2) - f(x3)) 
= ∆X*{ f(xo)/2+ f(x1)- f(x1)/2+ 1/2f(x1) + f(x2)- f(x2)/2+ 1/2f(x2)+ f(x3)- f(x3)/2} 
= ∆X*{ f(xo)/2+ f(x1)+ f(x2)+ f(x3)/2}  = formula under the curve! 
 

=  
 
 
 
f(x0)    (f(xo) - f(x1))  
                                                       
                        f(x1)                           
                                       (f(x1) - f(x2))  
                                                       
                                            f(x2)  
                                                         (f(x2) - f(x3))                                               
                                                               f(x3) 
 
                    
 
xo                 x1                            x2                  x3 
<-------∆x-----          
a                                                               b 

 
Formally, we get for n divisions which is best. The more divisions,n, the better the integral 
value compared to the definite integral of known functions, except too many could create 
problems.  

 
 
 
 
 
 
 
  

                                   



TRAPEZOIDAL INTEGRATION PROGRAM (example of a function of a function) 
We now construct an m-file to do trapezoidal integration. 
» type area1 
 
% This program estimates area under curve using trapezoids 
% USING A SPECIFIED n number of trapezoids, over the limits a to b the function func! 
>> type area1 
function y=area1(func,a,b,n) 
total=0; 
base=(b-a)/n; 
for k=2:n 
  xk= a+base*(k-1); 
  total =total +feval(func,xk); 
end 
y = 0.5 .* base .* (feval(func,a) + 2.0 .* total + feval(func,b)); 
 
func is the name of the function we will take the integral of  
% The special function feval as defined below permits us to use a function name when we 
have a function that needs another function as an argument. 
 
» help feval 
 
FEVAL Function evaluation. 
 If F is a string containing the name of a function (usually 
 defined by an M-file), then  FEVAL(F,x1,...,xn)  evaluates 
 that function at the given arguments.  For example, 
 F = 'foo',  FEVAL(F,9.64) is the same as  foo(9.64). 
 FEVAL is usually used inside functions which have the names 
 of other functions as arguments. 
 
So the function we are going to integrate must be passed the FEVAL as a 
String. 
% lets start with the built in function   sin() 
Using area1 to evaluate the integral of sin() between 0 and pi 
DO THIS NOW IN CLASS!  The answer is ? 
Remember the trapezoidal rule is a basic but primitive calculation we see this with 
The answers. 
Taking 20 divisions first then a 100 improves the results. 
>> area1('sin',0,pi,20) 
ans =    1.9959 
 
>> area1('sin',0,pi,100) 
ans =    1.9998 
 
%Since we are passing a function or our function area1 to be evaluated 
We say area1 is said to be a function function. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Another example is to use area1 to evaluate a function we define. 
Suppose we define an exponential function called fexp as 
 
» type fexp 
 
function y = fexp(x) 
y=4* exp(-x); 
 
% We now can get the integral of this function using our area1 function   which needs 
the name of the function to integrate as well as the limits  on the x-axis as well as how 
many trapezoids to use. So for examples 
 
» area1('fexp',0,1,5) 
ans =    2.5369 
 
» area1('fexp',0,1,10) 
ans =    2.5306 
 
» area1('fexp',0,1,50) 
ans =    2.5286 
 
» area1('fexp',0,1,100) 
ans =    2.5285 
 
%Here we have been getting answers in 4 decimal accuracy. As you know MATLAB 
actually does calculations to a high precision (double precision) in memory. We can 
increase the number of decimals, we output, by using the MATLAB format command. As in: 
 
» format long 
 
% Then when we run a program we get, for example 
» area1('fexp',0,1,100) 
ans =   2.52850330596441 
 
% We note an, we can consider an exact value to the integral can be calculated and to 
electronic calculator accuracy, my Iphone!  2.52848223514231 
our answer with 100 subdivisions of the area only agrees to 3 decimals in long form. 
This is because our integral function uses the trapezoidal approximation. We can do a lot 
Better.  
 
Matlab has more advance built in functions. 
Let us focus on the intrinsic routine quad() 
 
help quad 
 quad   Numerically evaluate integral, adaptive Simpson quadrature. 
    Q = quad(FUN,A,B) tries to approximate the integral of scalar-valued 
    function FUN from A to B to within an error of 1.e-6 using recursive 
    adaptive Simpson quadrature. FUN is a function handle. The function 
    Y=FUN(X) should accept a vector argument X and return a vector result 
    Y, the integrand evaluated at each element of X. 
  
    Q = quad(FUN,A,B,TOL) uses an absolute error tolerance of TOL 
    instead of the default, which is 1.e-6.  Larger values of TOL 
    result in fewer function evaluations and faster computation, 
    but less accurate results.  The quad function in MATLAB 5.3 used 
    a less reliable algorithm and a default tolerance of 1.e-3. 
     Etc.   
NOTE. Some advanced functions change when new versions of Matlab become available.  
 
Use help quad to see other integration schemes MATLAB has. 



% redoing the sin() function example with quad gives us a much better ansew to the exact 
value of 2 for the integration from 0 to pi. 
>> quad('sin',0,pi) 
ans =    2.0000 
 
>> format long 
>> quad('sin',0,pi) 
ans =   1.999999996398431 
 
% Note again above the value from my ipone to the integral of fexp()  2.52848223514231 
  Compare the answers below with this last value. 
RETURNING FOR COMPARISON TO LESS DECIMALS 
» format short 
 
» q=quad('fexp',0,1) 
q =    2.5285 
 
» format long 
» q=quad('fexp',0,1) 
q =   2.528482235687844 
% agreeing to 9 decimals to the iphone calculator value 
 
 
Even picking a large tolerance gives a good value since the routine is very robust in its 
convergence.  
>>quad('fexp',0,1,10)     ans    2.528482240821508 
    % How good is this one? 
 
% we see the last is best but the others are not bad 
Noting again the value for comparison the trapezoidal rule. 
» area1('fexp',0,1,100) 
ans =   2.52850330596441   a 3 decimal match 
We can  push  the trapezoidal area1 like having 10,000 trapezoids get a better matching 
value. After a while one has to wonder how good is our calculator value? 
 
>> area1('fexp',0,1,10000) 
ans =   2.528482237421307    
 
% In class let’s look over the quad.m files 
  with the 'type quad' and  note how a professional  mathematical package is done! 
% Be sure to check out in your careers the many numerical integration and 
differential functions Matlab provides. 
Run   the “demo” to see the wealth of mathematical power you have with MATLAB 
 
 >> demo 
 
 
                            
 
 
 
 
 
 
 
 
 
 
 
 



 
 
 
                                           LABORATORY TASKS   
Show all work, especially any files you construct as well as the executions. 
 
 
41. (2 pts) Try to get an exact value of the area with your calculator of the function above 
“fexp” between 0 and 1. What is this value and how many decimal places does the quad 
evaluation agree? 
 
 
42. (10 pts)  Recall  function humps 
» type humps 
function y = humps(x) 
% Humps(x) is a function used by QUADDEMO and ZERODEMO. 
y = 1 ./ ((x-.3).^2 + .01) + 1 ./ ((x-.9).^2 + .04) - 6; 

a. Write a short m-file that will call upon the function 
And integrate it from 0 to 1 both by first constructing the function  of function area1.m 
as above, using 100 trapezoids and then  

b. calling on  the built in quad function to get the area. 
c. The program also plots humps from 0 to 1 very finely with 100 values of x. 

Looking at the graph 
d.  WHICH OF THE two methods gave the best answer? Why or why not? 

Show all work! 
 
43(10 pts) . Integration fun. 
 

a. -Set up a function file for y(x)=34 exp(-0.2x) sin(3x+pi/8) call it whatever you want. 
In an  one m-file do the following  

b. -Integrate this function from 0 to 30 using the quad() functions. 
c. - next  use area1() to integrate this function. 
d. - Plot the function over the interval in steps of 0.01: Do a rough estimate of the area 

from the plot. 
e. -Compare the integrations over the same interval. Which is probably the best answer. 

Why? Or why not 
 
44. (8 pts)  Write a function function that sums all values of the function in 43 y(x)=… for 
each value in the interval -8 to +8 with steps of .1. Note: This function called SUMFUN calls 
the function  as an argument and uses feval() to get its answers (SEE THE area1 for feval 
use). Then run an m-file containing this function that gets the sum as specified.   
 
 
45. (8 pts) EXTRA CREDIT 
 Construct a function function that calculates the area from “a” to “b” when it divides any 
curve into “n” rectangular boxes  which it sums up to get the area.  
Run it for the sin() as above as well as fexp() as above. Comment on its accuracy! 
For the sin() keep increasing n to see what happens. (0 to pi range). Comment!  
 


