Chapter 22 Gauss's Law

I shot an arrow Electric Flux analogous to a flock of arrows

FLUX Φ is a Metaphor for Number of arrows, N, or number of lines of E Penetrating an area! $\Phi \sim N$. Think of E as #arrows/area How many arrows penetrate area! The number is E*A or sum over an area that encloses the charges "shooting" the arrows!

For a point charge, I derive GAUSS'S LAW VIA COULOMB'S LAW

$$\Phi = N = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint E \, dA = E \oint dA = E(4\pi r^2).$$

For a Point charge coulombs law gives E=kQ/r²

So
$$\Phi = E4\pi r^2 = kQ/r^2 * 4\pi r^2 = 4 \pi k Q = Q/\epsilon_0$$

THUS Gauss's law

$$\mathbf{\Phi} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{\text{encl}}}{\epsilon_0}.$$

Where Q_{encl} is inside the surface (called a gaussian surface)

22-1 Electric Flux

Electric flux: Φ

$$\Phi_E = E_\perp A = E A_\perp = E A \cos \theta,$$
 [$\vec{\mathbf{E}}$ uniform]

Remember the sphere

 $\Phi_E = \vec{\mathbf{E}} \cdot \vec{\mathbf{A}}.$ [$\vec{\mathbf{E}}$ uniform]

Electric flux through an area is proportional to the total number of field lines crossing the area.

Tilted surface to E gets less arrows penetrating the Area. If surface is II To E then N=0 going through the Area.

Example 22-1: Electric flux.

Calculate the electric flux through the rectangle shown. The rectangle is 10 cm by 20 cm, the electric field is uniform at 200 N/C, and the angle θ is 30°. NOW in CLASS!

22-1 Electric Flux

Flux through a closed surface: No Q inside $Q_{encl} = 0$

$$\Phi_E \approx \sum_{i=1}^n \vec{\mathbf{E}}_i \cdot \Delta \vec{\mathbf{A}}_i. \quad \mathbf{N}_{in} - \mathbf{N}_{out} = \mathbf{0}!$$

$$\Phi_E = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}}. \quad = \mathbf{0}!$$

$$d\vec{\mathbf{A}}$$

$$\theta(<\frac{\pi}{2})$$

The net number of field lines through the surface is proportional to the charge enclosed, and also to the flux, giving Gauss's law:

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{\text{encl}}}{\epsilon_0}.$$

This can be used to find the electric field in situations with a high degree of symmetry. Non-symmetry problems are very difficult!!!

22-2 Gauss's Law applied

For a point charge,

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint E \, dA = E \oint dA = E(4\pi r^2).$$

Therefore,

$$\frac{Q}{\epsilon_0} = \oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = E(4\pi r^2).$$

Solving for *E* gives the result we expect from Coulomb's law: AS WE SAW!

$$E = \frac{Q}{4\pi\epsilon_0 r^2}.$$

Using Coulomb's law to evaluate the integral of the field of a point charge over the surface of a sphere surrounding the charge gives:

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint \frac{1}{4\pi\epsilon_0} \frac{Q}{r^2} dA = \frac{Q}{4\pi\epsilon_0 r^2} (4\pi r^2) = \frac{Q}{\epsilon_0}.$$

Looking at the arbitrarily shaped surface A_2 , we see that the same flux passes through it as passes through A_1 . Therefore, this result should be valid for any closed surface about Q!.

Finally, if a gaussian surface encloses several point charges, the superposition principle shows that:

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \oint (\Sigma \vec{\mathbf{E}}_i) \cdot d\vec{\mathbf{A}} = \Sigma \frac{Q_i}{\epsilon_0} = \frac{Q_{\text{encl}}}{\epsilon_0}.$$

Therefore, Gauss's law is valid for any charge distribution. Note, however, that it only refers to the field due to charges within the gaussian surface – charges outside the surface will also create fields.

Conceptual Example 22-2: Flux from Gauss's law. Consider the two gaussian surfaces, A_1 and A_2 , as shown. The only charge present is the charge Q at the center of surface A_1 . What is the net flux through each surface, A_1 and A_2 ? Gauss's law gives

For A₁ A₂ For Formula 1 and 1 an

For $A_1 \Phi = Q/\epsilon_0$

For A2 Φ =0

Hand in HW(show all work) understanding flux!

- 17. If a point charge is located at the center of a cube and the electric flux through one face of the cube is 8.0 Nm²/C, what is the total flux leaving the cube?
- 18. A charge $q = 4 \mu C$ is placed at the origin in a region where there is already a uniform electric field = (200 N/C) . Calculate the flux of the net electric field through a Gaussian sphere of radius R = 20 cm centered at the origin.
- 19. If the electric flux through a circular area is 10.0 Nm²/C, what is the electric flux through a circle of double the diameter assuming the orientations of the circles are the same and the electric field is uniform?
- 20. Charges + Q, -4Q, and + 2Q are placed inside a cubic enclosure, but their positions are not specified. What is the total electric flux passing through the walls of the container? As a formula and if Q=4nC. Value and units!
- 21. An uniform electric field of magnitude E = 100 N/C is oriented along the positive y-axis. What is the magnitude of the flux of this field through a square of surface area $A = 2 \text{ m}^2$ oriented parallel to the yz-plane?

REMINDER: A few words about dQ and charge density distribution which could be constant everywhere (ie uniform) or a function of the geometry (eg. radius of sphere) when we need total charge in Gauss's law

Line density = λ = dQ/dl C/m if uniform λ =Q/l for total charge Q= λ l we use dQ= λ dl in a distribution and Q=integral of last

Area density $\sigma = dQ/dA$ C/m² if uniform $\sigma = Q/A$ for total charge $Q = \sigma A$ we use dQ= σdA in a distribution and Q=integral of last

Volume density $\rho = dQ/dV$ C/m³ if uniform $\rho = Q/V$ for total charge Q= ρdV we use dQ= ρdV in a distribution and Q=integral of last

Example 22-3: Spherical conductor.

A thin spherical shell of radius r_0 possesses a total net charge Q that is uniformly distributed on it. Determine the electric field at points (a) outside the shell, and (b) within the shell. (c) What if the conductor were a solid sphere? $A_2: E4\pi r^2 = 0 -> E = 0!$

 $A_1: E4\pi r^2 = Q/\epsilon_0$ $E=(1/4\pi\epsilon_0)$ Q/r²

PART C??

Example 22-4: Solid sphere of charge.

An electric charge Q is distributed uniformly throughout a nonconducting sphere of radius r_0 . **Determine the** electric field (a) outside the sphere $(r > r_0)$ and (b) inside the sphere $(r < r_0)$.

Charge spreads in Volume so we use

$$ρ = constant = Q/V$$

= $Q/(4/3)πr_0^3 = Q_{encl}/(4/3)πr^3$

$$Q_{encl} = r^3 / r_0^3 \quad Q$$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{\text{encl}}}{\epsilon_0} = \mathbf{E} 4\pi \mathbf{r}^2 \quad \text{on } \mathbf{A_2}$$

Or for r<r₀ E= $(1/4\pi\epsilon_0)$ (Q/r₀³) r after cancellation

Or
$$E = (\rho/3\epsilon_0) r$$

Example 22-5:
Nonuniformly charged solid sphere.

Suppose the charge density of a solid sphere is given by $\rho_{\rm E} = \alpha r^2$, where α is a constant. (a) Find α in terms of the total charge Q on the sphere and its radius r_0 . (b) Find the electric field as a function of r inside

ρ_E =dQ/dV to get Q insideWe need to integrate

the sphere. $dV = 4\pi r^2 dr$ by symmetry of sphere

VERY IMPORTANT PROBLEM Find α ? in terms of total Q: We need to integrate to r_0 where $\rho_E = \alpha r^2$

 ρ_E =dQ/dV or dQ= ρ_E dV

Q=
$$\int \rho_E dV = \int_0^{r_0} \alpha r^2 4\pi r^2 dr = 4\pi\alpha \int_0^{r_0} r^4 dr = (4\pi\alpha/5) r_0^5$$

EQ #1 Thus $\alpha = 5Q/4\pi r_0^5$

(b) Find E inside as a f(r)? Q_{encl} is within r!

$$Q_{encl} = \int_{o}^{r} \rho_{E} dV = (4\pi\alpha/5) r^{5} = Q r^{5} / r_{0}^{5} using EQ#1$$

$$\oint \vec{\mathbf{E}} \cdot d\vec{\mathbf{A}} = \frac{Q_{\text{encl}}}{\epsilon_0} \cdot \qquad \qquad \mathbf{E} 4\pi r^2 = \mathbf{Q} r^5 / r_0^5 \epsilon_0$$

E=Qr³/4πε₀
$$\mathbf{r_0}^5$$
 Note r=0 E=0 and r=r₀ E=Q/4πε₀ $\mathbf{r_0}^2$!

Example 22-6: Long uniform line of charge.

A very long straight wire possesses a uniform positive charge per unit length, λ . =Q/I Calculate the electric field at points near (but outside) the wire, far from the ends.

Example 22-7: Infinite plane of charge.

Charge is distributed uniformly, with a surface charge density σ (σ = charge per unit area = dQ/dA) over a very large but very thin nonconducting flat plane surface. Determine the electric field at points near the plane. ($Q_{encl} = \sigma A$)

2EA=
$$\sigma$$
 A / ε_0 E= σ /2 ε_0

Example 22-8: Electric field near any conducting surface.

Show that the electric field just outside the surface of any good conductor of arbitrary shape is given by

$$E = \sigma/\epsilon_0$$

where σ is the surface charge density on the conductor's surface at that point.

The difference between the electric field outside a conducting plane of charge and outside a nonconducting plane of charge can be thought of in two ways:

- 1. The field inside the conductor is zero, so the flux is all through one end of the cylinder. i.e. we use a small cylinder as before
- 2. The nonconducting plane has a total charge density σ , whereas the conducting plane has a charge density σ on each side, effectively giving it twice the charge density.

Suppose a conductor carries a net charge +Q and contains a cavity, inside of which is a point charge +q. What can you say about the charges on the inner and outer surfaces of

the conductor?

22-3 Applications of Gauss's Law Point charge

The outside Or q+Q is now on outer surface

The conductor itself has -q on inside

And Q+q on outside net =Q+q-q=Q!

Hand in HW applications of Gauss's Law show formula answers then quantify!

- 22. An infinitely long cylinder of radius R = 4 cm carries a uniform charge density = $29 \mu C/m^3$. Calculate the electric field at distance r = 2 cm from the axis of the cylinder (ie inside) and r = 8cm (ie outside).
- 23. A coaxial cable consists of two long concentric conducting cylindrical shells of radii a and b. The linear charge density on the surface of the inner conductor (eg a wire of radius a!) is $+ \lambda$ and on the outer conductor $-\lambda$. Determine E everywhere. le 1. a<r
b? 2. r>b? 3. r<a?

- 24. Charge Q is distributed uniformly over a hollow spherical surface (like the shell of a soccer ball) of radius R. Determine E inside and outside the sphere.(ie r<R and r>R)?
- 25. Charge is distributed with uniform volume charge density ρ throughout the volume of a sphere of radius R. Determine E everywhere. r<R? r>R?
- 26. A spherical, non-conducting shell of inner radius r_1 = 8 cm and outer radius r_2 = 18 cm carries a total charge Q = 15 μ C distributed uniformly throughout its volume. A. What is the electric field at a distance r= 14 cm from the center of the shell? HINT:This means we are inside the shell and there is a volume distribution so you have to determine the Q inside the Gaussian surface you draw. Text Example 22– 4 might help
- 27. A solid sphere of radius R has an electric charge density ρ = br. A. Find b in terms of R and total charge Q on the sphere?. B. Determine the electric field inside and outside the sphere?. Hint: see text example 22-5

Procedure for Gauss's law problems:

- 1. Identify the symmetry, and choose a gaussian surface that takes advantage of it (with surfaces along surfaces of constant field).
- 2. Draw the surface.
- 3. Use the symmetry to find the direction of \vec{E} .
- 4. Evaluate the flux by integrating.
- 5. Calculate the enclosed charge.
- 6. Solve for the field.