Chapter 27 Magnetism

27-1 Magnets and Magnetic Fields

Magnets have two
ends - poles - called north and south.

Like poles repel; unlike poles attract.

Repulsive

Repulsive

27-1 Magnets and Magnetic Fields

However, if you cut a magnet in half, you don't get a north pole and a south pole - you get two smaller magnets.

27-1 Magnets and Magnetic Fields

Magnetic fields can be visualized using magnetic field lines, which are always closed loops.

Magnetism

Plays a Major Role

 On the structure of the Sun and important on Earth Here Iron filings are Sprinkled about a Magnet and We get a sense of what Is happening Around the space of The magnet
FILM: MAGNET

 AND IRON FILINGS
FILM 3D FIELD

Sources of Magnetic Fields

- Motions of charged particles are what create magnetic fields
- In Planets and the Sun and in devices!
- We use this for many applications

27-1 Magnets and Magnetic Fields

The Earth's magnetic field is similar to that of a bar magnet.

Note that the Earth's "North Pole" is really a south magnetic pole, as the north ends of magnets are attracted to it.

Sources of Magnetic Fields

- A planet can have a magnetic field if charged particles are moving inside
- 3 requirements:
- Molten interior
- Convection
- Moderately rapid rotation

AURORA

Solar wind particles
That leak into the
Earth's upper
Atmosphere
Ionize gas atoms that
Capture electrons
Resulting in
An
EMISSION
SPECTRUM
Of rays
\& beautiful
curtains

Another Aurora (Polar Light)

As high-energy particles leak into the lower magnetosphere, they excite molecules near the Earth's magnetic poles, causing the aurora

Aurora are dynamic!

- Aurora Australis From McMurdo station Antarctica

27-1 Magnets and Magnetic Fields

A uniform magnetic field is constant in magnitude and direction.

The field between these two wide poles is nearly uniform.

27-2 Electric Currents Produce Magnetic Fields

Experiment shows that an electric current produces a magnetic field. The direction of the field is given by a right-hand rule.

27-2 Electric Currents Produce Magnetic Fields

Here we see the field due to a current loop; the direction is again given by a right-hand rule.

27-3 Force on an Electric Current in a Magnetic Field; Definition of \bar{B}

A magnet exerts a force on a current-carrying wire. The direction of the force is given by a right-hand rule.
The force on the wire depends on the current, the length of the wire, the magnetic field, and its orientation:

$$
\begin{aligned}
F & =I \ell B \sin \theta \\
\overrightarrow{\mathbf{F}} & =I \vec{\ell} \times \overrightarrow{\mathbf{B}}
\end{aligned}
$$

This last equation defines the magnetic field In vector notation:

27-3 Force on an Electric Current in a Magnetic Field; Definition of B

Unit of B : the tesla, T:

$$
1 \mathrm{~T}=1 \mathrm{~N} / \mathrm{A} \cdot \mathrm{~m} . \text { Ie from } \mathrm{F}=\mathrm{illB}->\mathrm{B}=\mathrm{F} / \mathrm{il}
$$

Another unit sometimes used: the gauss (G):

$$
1 \mathrm{G}=10^{-4} \mathrm{~T} .
$$

Earth's field is ~0.5G

27-3 Force on an Electric Current in a Magnetic Field; Definition of \bar{B}

Example 27-1: Magnetic Force on a current-carrying wire.

A wire carrying a 30-A current has a length $\ell=12$ cm between the pole faces of a magnet at an angle $\theta=60^{\circ}$, as shown.
The magnetic field is approximately uniform at 0.90 T. We ignore the field beyond the pole pieces. What is the magnitude of the force on the wire?

CLASS

$$
F=I \ell B \sin \theta
$$

27-3 Force on an Electric Current in a Magnetic Field; Definition of B

Example 27-2: Measuring a magnetic field.

A rectangular loop of wirê hangs vertically as shown. A magnetic field ${ }^{\text {is directed }}$ horizontally, perpendicular to the wire, and points out of the page at all points. The magnetic field is very nearly uniform along the horizontal portion of wire ab (length ${ }^{-}=$ 10.0 cm) which is near the center of the gap of a large magnet producing the field. The top portion of the wire loop is free of the field. The loop hangs from a balance which measures a downward magnetic force (in addition to the gravitational force) of $F=3.48$ $\times 10^{-2} \mathrm{~N}$ when the wire carries a current $I=$ 0.245 A . What is the magnitude of the commagnetic fitield B ?

27-3 Force on an Electric Current in a Magnetic Field; Definition of
\bar{B}

Example 27-3: Magnetic Force on

 a semicircular wire.A rigid wire, carrying a current I, consists of a semicircle of radius R and two straight portions as shown. The wire lies in a plane perpendicular to a uniform magnetic field B_{0} Note choice x and y axis. The straight portions each have length ℓ within the field. Determine the net force on the wire due to the magnetic field. Note symmetry cancellations all x Components of dF and these
Only y component of dF, dFsin ϕ Also dl=Rd $\phi->\Sigma d F \sin \phi \& d F=i B_{0} R d \phi$

$$
F=\int_{0}^{\pi} d F \sin \varphi=I B{ }_{0} R \int_{0}^{\pi} \sin \varphi d \varphi=2 I B_{0} R
$$

HAND IN HW. Recall by first Sketch, set up equations, solve algebraically then plug in numbers. All answers in Scientific notation.

These problems are from the textbook and please I do not want to see online solutions(they will have no value). Do them in your own way.

85: 27-2
 86: 27-6
 87: 27-7 88: 27-10

27-4 Force on an Electric Charge Moving in a Magnetic Field

The force on a moving charge is related to the force on a current:
le. Assume $\mathrm{i}=\mathrm{Q} / \mathrm{t}=\mathrm{Nq} / \mathrm{t} \mathrm{N}$ number of charges And v velocity so they travel in t a length $l=v t$

Thus $\mathrm{F}=\mathrm{ilxB}=\mathrm{N}(\mathrm{q} / \mathrm{t}) \mathrm{vt} \mathrm{xB}=\mathrm{NqvxB}$ So for one charge.

$$
\overrightarrow{\mathbf{F}}=q \overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{B}} .
$$

Once again, the direction is given by a right-hand rule.

Right-hand rule part of: THE LORENTZ FORCE

27-4 Force on an Electric Charge Moving in a Magnetic Field

Conceptual Example 27-4: Negative charge near a magnet.

A negative charge - Q is placed at rest near a magnet. Will the charge begin to move? Will it feel a force? What if the charge were positive, $+\boldsymbol{Q}$?

CLASS?

27-4 Force on an Electric Charge Moving in a Magnetic Field

Example 27-5: Magnetic force on a proton.
A magnetic field exerts a force of $8.0 \times 10^{-14} \mathrm{~N}$ toward the west on a proton moving vertically upward at a speed of $5.0 \times 10^{6} \mathrm{~m} / \mathrm{s}$. When moving horizontally in a northerly direction, the force on the proton is zero. Determine the magnitude and direction of the magnetic field in this region. (The charge on a proton is $q=+e=1.6 \times 10^{-19} \mathrm{C}$.)

Direction of B ?
Angle θ ?
$B=F / q v=0.1 T$

+ Moving into page (north)

27-4 Force on an Electric Charge Moving in a Magnetic Field

Example 27-6: Magnetic force on ions during a nerve pulse.

Estimate the magnetic force due to the Earth's magnetic field on ions crossing a cell membrane during an action potential. Assume the speed of the ions is $10^{-2} \mathrm{~m} / \mathrm{s} . \quad \mathrm{B} \sim 0.5 \mathrm{G} \sim 10^{-4} \mathrm{~T}$
F~qvB $\sim 10^{-19} \mathrm{C} 10^{-2} \mathrm{~m} / \mathrm{s} \times 10^{-4} \mathrm{~T}=10^{-25} \mathrm{~N}$

HAND IN HW. Recall by first Sketch, set up equations, solve algebraically then plug in numbers. All answers in Scientific notation.

These problems are from the textbook and please I do not want to see online solutions(they will have no value). Do them in your own way.
$\begin{array}{ll}\text { 89: } & 27-13 \\ \text { 90: } & 27-14 \\ 91: & 27-16\end{array}$

27-4 Force on an Electric Charge Moving in a Magnetic Field

If a charged particle is moving perpendicular to a uniform magnetic field, its path will be a circle. NOTE Perpendicular!!!

Example 27-7: Electron's path in a uniform magnetic field.
An electron travels at $2.0 \times 10^{7} \mathrm{~m} / \mathrm{s}$ in a plane perpendicular to a uniform 0.010-T magnetic field. Describe its path quantitatively.
le radius of path, period and Frequency of orbit

CLASS?

Path of electron
$\overrightarrow{\mathbf{B}}$ is into the page

27-4 Force on an Electric Charge Moving

 in a Magnetic FieldGiven:v=2.0 x $107 \mathrm{~m} / \mathrm{s} \quad \mathrm{B}=0.010 \mathrm{~T}$ radius of path, period and frequency of orbit?

$$
\Sigma \mathrm{F}=\mathrm{ma}->\text { so } \mathrm{qvB}=\mathrm{mv}^{2} / \mathrm{r}
$$

$$
\mathrm{r}=\mathrm{mv} / \mathrm{qB}(\mathrm{v}, \mathrm{~B}, \& \mathrm{r} \text { constant! })
$$

$\mathrm{T}=2 \pi \mathrm{r} / \mathrm{v}=2 \pi \mathrm{r} / \mathrm{qBr} / \mathrm{m}=$ $2 \pi \mathrm{~m} / \mathrm{qB}$
$f=q B / 2 \pi m->$ Cyclotron frequency

Path of electron
$\overrightarrow{\mathbf{B}}$ is into the page

27-4 Force on an Electric Charge Moving in a Magnetic Field

Conceptual Example 27-8: Stopping charged particles.

Can a magnetic field be used to stop a single charged particle, as an electric field can?

CLASS

27-4 Force on an Electric Charge Moving in a Magnetic Field

Problem solving: Magnetic fields - things to remember:

1. The magnetic force is perpendicular to the magnetic field direction.
2. The right-hand rule is useful for determining directions.
3. Equations in this chapter give magnitudes only. The right-hand rule gives the direction.

27-4 Force on an Electric Charge Moving in a Magnetic Field

TABLE 27-1 Summary of Right-hand Rules (= RHR)

Physical Situation	Example	How to Orient Right Hand	Result		
1. Magnetic field produced by current (RHR-1)		Wrap fingers around wire with thumb pointing in direction of current I	Fingers point in direction of $\overrightarrow{\mathbf{B}}$		
2. Force on electric current I due to magnetic field (RHR-2)		$\overrightarrow{\mathbf{F}}$		Fingers point straight along current I, then bend along magnetic field $\overrightarrow{\mathbf{B}}$	Thumb points in direction of the force $\overrightarrow{\mathbf{F}}$
3. Force on electric charge $+q$ due to magnetic field (RHR-3)	$\overrightarrow{\mathbf{I}}$		$\overrightarrow{\mathbf{F}}$		

HAND IN HW. Recall by first Sketch, set up equations, solve algebraically then plug in numbers. All answers in Scientific notation.

These problems are from the textbook and please I do not want to see online solutions(they will have no value) Do them in your own way.

92: 27-15
93: 27-18
94: 27-19
95: 27-22

27-4 Force on an Electric Charge Moving in a Magnetic Field Conceptual Example 27-9: A helical path.

What is the path of a charged particle in a uniform magnetic field if its velocity is not perpendicular to the magnetic field?

27-4 Force on an Electric Charge Moving in a Magnetic Field

The aurora borealis (northern lights) is caused by charged particles from the solar wind spiraling along the Earth's magnetic field, and colliding with air molecules.

27-4 Force on an Electric Charge Moving in a Magnetic Field

Conceptual Example 27-10: Velocity selector, or filter: crossed $\overline{\mathbf{E}}$ and $\overline{\mathbf{B}}$ fields.

Some electronic devices and experiments need a beam of charged particles all moving at nearly the same velocity. This can be achieved using both a uniform electric field and a uniform magnetic field, arranged so they are at right angles to each other. Particles of charge q pass through slit S_{1} and enter the region where \bar{B} points into the page and \bar{E} points down from the positive plate toward the negative plate. If the particles enter with different velocities, show how this device "selects" a particular velocity, and

CLASS?

$\Sigma \mathrm{F}=0$
$q v B=q E$ get thru!
Only! v=E/B!

27-7 Discovery and Properties of the Electron

Electrons were first observed in cathode ray tubes. These tubes had a very small amount of gas inside, and when a high voltage was applied to the cathode, some "cathode rays" appeared to travel from the cathode to the anode. What are these mysterious rays?

Screens

27-7 Discovery and Properties of the Electron

The value of e/m for the cathode rays was measured in 1897 using the apparatus below; it was then that the rays began to be called electrons(negative!). Circular arcs r can be measured

$e v B=m v^{2} / r->e / m=v / B{ }^{\text {palates }}$ magnetic field
Find v ? with point $b v=E / B$ so $e / m=E / B^{2} r$

27-7 Discovery and Properties of the Electron

Millikan measured the electron charge directly shortly thereafter, using the oil-drop apparatus diagrammed below, and showed that the electron was a constituent of the atom (and not an atom itself, as its mass is far too small).

qE=mg balance drops $q=m g / E m$ is found by
A different technique
Experiment yields
Q=Ne!
The currently accepted values of the electron mass and charge are

$$
\begin{aligned}
m & =9.1 \times 10^{-31} \mathrm{~kg} \\
e & =1.6 \times 10^{-19} \mathrm{C}
\end{aligned}
$$

27-9 Mass Spectrometer

A mass spectrometer measures the masses of atoms. If a charged particle is moving through perpendicular electric and magnetic fields, there is a particular speed at which it will not be deflected, which then allows the measurement of its mass:

All the atoms reaching the second magnetic field will have the same speed; their radius of curvature will depend on their mass.

$$
\begin{aligned}
& \text { us of curvature } \\
& \text { nd on their mass. } \quad \text { qVB' } \\
& m=\frac{q B^{\prime} r}{v}=\frac{q B B^{\prime} r}{E} .
\end{aligned}
$$

Vel. select

> If all fields are known we measure r and get m two or more r's from sample S =isotopes

27-9 Mass Spectrometer

Example 27-14: Mass spectrometry.
Carbon atoms of atomic mass 12.0 u are found to be mixed with another, unknown, element. In a mass spectrometer with fixed B^{\prime}, the carbon traverses a path of radius 22.4 cm and the unknown's path has a $26.2-\mathrm{cm}$ radius. What is the unknown element? Assume the ions of both elements have the same charge.
CLASS?

$$
m_{x} / m_{C}=r_{x} / r_{C}=1.17 m_{x}=1.17 m_{C}=14.0 u
$$

$$
{ }^{14} \mathrm{C}_{6} \text { or }{ }^{14} \mathrm{~N}_{7}
$$

HAND IN HW. Recall by first Sketch, set up equations, solve algebraically then plug in numbers. All answers in Scientific notation.

These problems are from the textbook and please I do not want to see online solutions(they will have no value 0). Do them in your own way.

96: 27-20
97: 27-22
98: 27-25

27-5 Torque on a Current Loop; Magnetic Dipole Moment

The forces on opposite sides of a current loop will be equal and opposite (if the field is uniform and the loop is symmetric), but there may be a torque.

The magnitude of the torque is given by

$$
\tau=N I A B \sin \theta
$$

27-5 Torque on a Current Loop; Magnetic Dipole Moment

The quantity NIA is called the magnetic dipole moment, μ :

$$
\overrightarrow{\boldsymbol{\mu}}=N I \overrightarrow{\mathbf{A}} .
$$

The potential energy of the loop depends on its orientation in the field:

$$
U=-\mu B \cos \theta=-\overrightarrow{\boldsymbol{\mu}} \cdot \overrightarrow{\mathbf{B}} .
$$

27-5 Torque on a Current Loop; Magnetic Dipole Moment

Example 27-11: Torque on a coil.
A circular coil of wire has a diameter of 20.0 cm and contains 10 loops. The current in each loop is 3.00 A , and the coil is placed in a $2.00-\mathrm{T}$ external magnetic field. Determine the maximum and minimum torque exerted on the coil by the field.

27-5 Torque on a Current Loop; Magnetic Dipole Moment

Example 27-12: Magnetic moment of a hydrogen atom.

Determine the magnetic dipole moment of the electron orbiting the proton of a hydrogen atom at a given instant, assuming (in the Bohr model) it is in its ground state with a circular orbit of radius $r=0.529 \times 10^{-10} \mathrm{~m}$. [This is a very rough picture of atomic structure, but nonetheless gives an accurate result.]

27-6 Applications: Motors, Loudspeakers, Galvanometers

An electric motor uses the torque on a current loop in a magnetic field to turn magnetic energy into kinetic energy.

27-6 Applications: Motors, Loudspeakers, Galvanometers

Loudspeakers use the principle that a magnet exerts a force on a current-carrying wire to convert electrical signals into mechanical vibrations, producing sound.

27-6 Applications: Motors, Loudspeakers, Galvanometers

A galvanometer takes advantage of the torque on a current loop to measure current; the spring constant is calibrated so the scale reads in amperes.

SKIP WHAT FOLLOWS SPR 16

27-8 The Hall Effect->Hall Probe to measure magnetic fields
When a current-carrying wire is placed in a magnetic field, there is a sideways force on the electrons in the wire. This tends to push them to one side and results in a potential difference from one side of the wire to the other; this is called the Hall effect. The emf differs in sign depending on the sign of the charge carriers; this is how it was first determined that the charge carriers in ordinary conductors are negatively charged.

(a)

$$
\Sigma \mathrm{F}=0->\mathrm{eE}_{\mathrm{H}}=\mathrm{ev}_{\mathrm{d}} \mathrm{~B}
$$

$\operatorname{EMF}(\mathrm{V})=\mathrm{E}_{\mathrm{H}} \mathrm{d}=\mathrm{v}_{\mathrm{d}} \mathrm{Bd}$

27-8 The Hall Effect

Example 27-13: Drift velocity using the Hall effect.

A long copper strip 1.8 cm wide and 1.0 mm thick is placed in a 1.2-T magnetic field. When a steady current of 15 A passes through it, the Hall emf is measured to be $1.02 \mu \mathrm{~V}$. Determine the drift velocity of the electrons and the density of free (conducting) electrons (number per unit volume) in the copper.

